University of Toronto to Push Limits of New Supercomputer with Heroic Ocean Modeling Problem

March 5, 2018

March 5 — To break in Canada’s newest, most powerful research supercomputer, the University of Toronto’s Richard Peltier is running a “heroic calculation” – one that is expected to shed new light on how the world’s oceans physically function.

It’s unknown how long it will take the more than $18-million machine known as Niagara to crunch the millions of gigabytes in real-time data streaming to it now from the ocean bottom of the Pacific.

“It’s never been done before,” said Peltier, a globally renowned climate change expert. “It could be days or even a week depending on the spatial resolution we decide to work at.”

Unveiled today, Niagara is a massive network of 60,000 cores – the equivalent of roughly 60,000 powerful desktop computers – that can be tasked to work together simultaneously on a single, humungous problem.

This type of setup, known as a large parallel system, is the only one in Canada and is housed in a secure, nondescript location in Vaughan, Ont. It’s open to all Canadian university researchers and is part of a national network of research computing infrastructure.

Up and running for a week, the SciNet team has started feeding the data for Peltier into Niagara. He came up with the idea of running a heroic calculation on it after discussing with colleagues how best to strenuously test the power of the large parallel system.

“By devoting the entire machine, not only a portion of it, to this one calculation – that’s why it’s ‘heroic,’” said Peltier, a U of T University Professor of physics and scientific director of SciNet. “This is pure, curiosity-driven research. We hope the results will warrant publication and be a major coup for Niagara.”

Running a similar calculation on the old SciNet supercomputer would have taken roughly 20 times longer.

The calculation, done in partnership with researchers at the University of Michigan and the Jet Propulsion Lab at Caltech, is attempting to answer a fundamental research question that holds great interest for researchers in a number of fields.

In the 1970s, oceanographers Chris Garrett and Walter Munk famously theorized the world’s oceans are filled with internal waves ricocheting back and forth from the ocean bottom to the surface and predicted the shape of the power spectrum that should be observed in these waves.

The waves are generated by the barotropic tide causing the water in the oceans to slosh back and forth horizontally in response to the gravitational pull of the sun and moon. Their intensity is magnified by bumps along the ocean floor – the bumpier the bottom, the stronger the wave, Peltier explained. When waves break, turbulence is generated and causes friction, which makes the ocean dissipative and “sticky.”

But for more than four decades, scientists have lacked an accurate, high resolution model of the detailed physics of this interaction to actually see whether the theoretical arguments are correct, he said.

To conduct the Niagara calculation, his team of collaborators are using data from ocean sensors called McLane profilers in selected patches of the Pacific Ocean – one near the Hawaiian islands, which has a very bumpy ocean bottom, and one in the open ocean of the central-west Pacific, which has a smoother ocean floor.

This information will then be coupled with atmospheric data to model the formation, intensity and life span of these waves as they dissipate over time.

“I’d like to think that we’ll be able to verify at very high spatial resolution the internal wave spectrum,” said Peltier. “Hopefully we’ll be able to shout, ‘Eureka, we’ve not only seen wiggles, we’ve seen wiggles of the right set of [wave] phase speeds that the ocean should be filled with” – as predicted by Garrett and Munk.

This calculation will “assure us that when we do put an ocean model to work in the context of a global warming calculation, for example, that we can feel secure that the physical process is properly represented,” he added.

University of Michigan oceanographer Brian Arbic said understanding the actions of internal waves more fully will also have a profound impact on the study of ocean temperatures, salinity, circulation and marine biology, which are “crucial for Earth’s climate, marine resources and uptake of carbon and heat by the Earth’s oceans.”

“This is a first for our community and implies that we have the potential for modelling internal gravity waves more realistically than ever before,” he said.

“The U of T supercomputer is extremely important to this work. It is a very large and cutting-edge machine. We would not be able to do this calculation right now without access to it.”

For Peltier, breaking internal waves caused by flow over bumps – whether mountain tops on the surface of the continent or on the ocean floor at great depth beneath the ocean surface – has been an area of intense interest for him since the beginning of his career.

He’s already planning how he’ll apply Niagara’s heroic calculation results to Ice Age conditions, when the level of water in the oceans was much lower and waves broke further offshore away from the continental slopes.

“The spectrum of waves in the oceans and the dissipation of waves should be dramatically different,” he said. “I’m expecting the stickiness of the ocean will change dramatically.”


Source: University of Toronto

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Intel’s Optane/DAOS Solution Tops Latest IO500

August 11, 2020

Intel’s persistent memory technology, Optane, and its DAOS (Distributed Asynchronous Object Storage) stack continue to impress and gain market traction. Yesterday, Intel reported an Optane and DAOS-based system finishe Read more…

By John Russell

Summit Now Offers Virtual Tours

August 10, 2020

Summit, the second most powerful publicly ranked supercomputer in the world, now has a virtual tour. The tour, implemented by 3D platform Matterport, allows users to virtually “walk” around the massive supercomputer Read more…

By Oliver Peckham

Supercomputer Simulations Examine Changes in Chesapeake Bay

August 8, 2020

The Chesapeake Bay, the largest estuary in the continental United States, weaves its way south from Maryland, collecting waters from West Virginia, Delaware, DC, Pennsylvania and New York along the way. Like many major e Read more…

By Oliver Peckham

Student Success from ‘Scratch’: CHPC’s Proof is in the Pudding

August 7, 2020

Happy Sithole, who directs the South African Centre for High Performance Computing (SA-CHPC), called the 13th annual CHPC National conference to order on December 1, 2019, at the Birchwood Conference Centre in Kempton Pa Read more…

By Elizabeth Leake

New GE Simulations on Summit to Advance Offshore Wind Power

August 6, 2020

The wind energy sector is a frequent user of high-power simulations, with researchers aiming to optimize wind flows and energy production from the massive turbines. Now, researchers at GE are preparing to undertake a lar Read more…

By Oliver Peckham

AWS Solution Channel

AWS announces the release of AWS ParallelCluster 2.8.0

AWS ParallelCluster is a fully supported and maintained open source cluster management tool that makes it easy for scientists, researchers, and IT administrators to deploy and manage High Performance Computing (HPC) clusters in the AWS cloud. Read more…

Intel® HPC + AI Pavilion

Supercomputing the Pandemic: Scientific Community Tackles COVID-19 from Multiple Perspectives

Since their inception, supercomputers have taken on the biggest, most complex, and most data-intensive computing challenges—from confirming Einstein’s theories about gravitational waves to predicting the impacts of climate change. Read more…

Research: A Survey of Numerical Methods Utilizing Mixed Precision Arithmetic

August 5, 2020

Within the past years, hardware vendors have started designing low precision special function units in response to the demand of the machine learning community and their demand for high compute power in low precision for Read more…

By Hartwig Anzt and Jack Dongarra

Intel’s Optane/DAOS Solution Tops Latest IO500

August 11, 2020

Intel’s persistent memory technology, Optane, and its DAOS (Distributed Asynchronous Object Storage) stack continue to impress and gain market traction. Yeste Read more…

By John Russell

Summit Now Offers Virtual Tours

August 10, 2020

Summit, the second most powerful publicly ranked supercomputer in the world, now has a virtual tour. The tour, implemented by 3D platform Matterport, allows use Read more…

By Oliver Peckham

Research: A Survey of Numerical Methods Utilizing Mixed Precision Arithmetic

August 5, 2020

Within the past years, hardware vendors have started designing low precision special function units in response to the demand of the machine learning community Read more…

By Hartwig Anzt and Jack Dongarra

Implement Photonic Tensor Cores for Machine Learning?

August 5, 2020

Researchers from George Washington University have reported an approach for building photonic tensor cores that leverages phase change photonic memory to implem Read more…

By John Russell

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

Machines, Connections, Data, and Especially People: OAC Acting Director Amy Friedlander Charts Office’s Blueprint for Innovation

August 3, 2020

The path to innovation in cyberinfrastructure (CI) will require continued focus on building HPC systems and secure connections between them, in addition to the Read more…

By Ken Chiacchia, Pittsburgh Supercomputing Center/XSEDE

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

Intel’s 7nm Slip Raises Questions About Ponte Vecchio GPU, Aurora Supercomputer

July 30, 2020

During its second-quarter earnings call, Intel announced a one-year delay of its 7nm process technology, which it says it will create an approximate six-month shift for its CPU product timing relative to prior expectations. The primary issue is a defect mode in the 7nm process that resulted in yield degradation... Read more…

By Tiffany Trader

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

Supercomputer-Powered Research Uncovers Signs of ‘Bradykinin Storm’ That May Explain COVID-19 Symptoms

July 28, 2020

Doctors and medical researchers have struggled to pinpoint – let alone explain – the deluge of symptoms induced by COVID-19 infections in patients, and what Read more…

By Oliver Peckham

Intel’s 7nm Slip Raises Questions About Ponte Vecchio GPU, Aurora Supercomputer

July 30, 2020

During its second-quarter earnings call, Intel announced a one-year delay of its 7nm process technology, which it says it will create an approximate six-month shift for its CPU product timing relative to prior expectations. The primary issue is a defect mode in the 7nm process that resulted in yield degradation... Read more…

By Tiffany Trader

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Neocortex Will Be First-of-Its-Kind 800,000-Core AI Supercomputer

June 9, 2020

Pittsburgh Supercomputing Center (PSC - a joint research organization of Carnegie Mellon University and the University of Pittsburgh) has won a $5 million award Read more…

By Tiffany Trader

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

Leading Solution Providers

Contributors

Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Joliot-Curie Supercomputer Used to Build First Full, High-Fidelity Aircraft Engine Simulation

July 14, 2020

When industrial designers plan the design of a new element of a vehicle’s propulsion or exterior, they typically use fluid dynamics to optimize airflow and in Read more…

By Oliver Peckham

John Martinis Reportedly Leaves Google Quantum Effort

April 21, 2020

John Martinis, who led Google’s quantum computing effort since establishing its quantum hardware group in 2014, has left Google after being moved into an advi Read more…

By John Russell

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This