University Researchers Develop New Way to Simulate Quantum Systems

November 26, 2019

Nov. 26, 2019 — Billions of tiny interactions occur between thousands of particles in every piece of matter in the blink of an eye. Simulating these interactions in their full dynamics was said to be elusive but has now been made possible by new work of researchers from Oxford and Warwick.

In doing so, they have paved the way for new insights into the complex mutual interactions between the particles in extreme environments such as at the heart of large planets or laser nuclear fusion.

Researchers at the University of Warwick and University of Oxford have developed a new way to simulate quantum systems of many particles, that allow for the investigation of the dynamic properties of quantum systems fully coupled to slowly moving ions.

Effectively, they have made the simulation of the quantum electrons so fast that it could run extremely long without restrictions and the effect of their motion on the movement of the slow ions would be visible.

Reported in the journal Science Advances, it is based on a long-known alternative formulation of quantum mechanics (Bohm dynamics) which the scientists have now empowered to allow the study of the dynamics of large quantum systems.

Many quantum phenomena have been studied for single or just a few interacting particles as large complex quantum systems overpower scientists’ theoretical and computational capabilities to make predictions. This is complicated by the vast difference in timescale the different particle species act on: ions evolve thousands of times more slowly than electrons due to their larger mass. To overcome this problem, most methods involve decoupling electrons and ions and ignoring the dynamics of their interactions – but this severely limits our knowledge on quantum dynamics.

To develop a method that allows scientists to account for the full electron-ion interactions, the researchers revived an old alternative formulation of quantum mechanics developed by David Bohm. In quantum mechanics, one needs to know the wave function of a particle. It turns out that describing it by the mean trajectory and a phase, as done by Bohm, is very advantageous. However, it took an additional suit of approximations and many tests to speed up the calculations as dramatic as required. Indeed, the new methods demonstrated an increase of speed by more than a factor of 10,000 (four orders of magnitude) yet is still consistent with previous calculations for static properties of quantum systems.

The new approach was then applied to a simulation of warm dense matter, a state between solids and hot plasmas, that is known for its inherent coupling of all particle types and the need for a quantum description. In such systems, both the electrons and the ions can have excitations in the form of waves and both waves will influence each other. Here, the new approach can show its strength and determined the influence of the quantum electrons on the waves of the classical ions while the static properties were proven to agree with previous data.

Many-body quantum systems are the core of many scientific problems ranging from the complex biochemistry in our bodies to the behavior of matter inside of large planets or even technological challenges like high-temperature superconductivity or fusion energy which demonstrates the possible range of applications of the new approach.

Prof Gianluca Gregori (Oxford), who led the investigation, said: Bohm quantum mechanics has often been treated with skepticism and controversy. In its original formulation, however, this is just a different reformulation of quantum mechanics. The advantage in employing this formalism is that different approximations become simpler to implement and this can increase the speed and accuracy of simulations involving many-body systems.”

Dr Dirk Gericke from the University of Warwick, who assisted the design of the new computer code, said: With this huge increase of numerical efficiency, it is now possible to follow the full dynamics of fully interacting electron-ion systems. This new approach thus opens new classes of problems for efficient solutions, in particular, where either the system is evolving or where the quantum dynamics of the electrons has a significant effect on the heavier ions or the entire system.

This new numerical tool will be a great asset when designing and interpreting experiments on warm dense matter. From its results, and especially when combined with designated experiments, we can learn much about matter in large planets and for laser fusion research. However, I believe its true strength lies in its universality and possible applications in quantum chemistry or strongly driven solids.”

B. Larder, D. O. Gericke, S. Richardson, P. Mabey, T. G. White, G. Gregori, Fast nonadiabatic dynamics of many-body quantum systems. Sci. Adv. 5, eaaw1634 (2019). DOI: 10.1126/sciadv.aaw1634


Source: University of Warwick

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire