University Researchers use JSC Supercomputing Resources to Better Understand Structural Material Design

October 29, 2019

Oct. 29, 2019 — From the earliest instance of smelting iron ore into metal or weaving fibers into cloth, humans have looked for ways to repurpose materials around us to use for specialized tasks. In recent decades, researchers have increasingly turned to high-performance computing (HPC) to aid in the next frontier of materials science research—in order to imbue materials with new and novel properties, scientists need to be able to understand and manipulate materials at an atomic level.

Snapshot of the molecular dynamics simulation of the deformation of a Cu|Au nanolaminate pillar. The image shows the extrusion of a wedge-shaped region. The wedge is bounded by two shear-bands that are the origin of this failure mode. Image courtesy of Adrien Gola, GCS.

Recently, researchers led by Prof. Lars Pastewka from the University of Freiburg have been using Gauss Centre for Supercomputing (GCS) resources at the Jülich Supercomputing Centre (JSC) in order to study atomic-level material interactions of nanolaminates, specialized materials that, when combined and structured correctly, exhibit increased strength, hardness, and wear resistance, among other properties.

“Our motivation for studying nanolaminates is focused on trying to develop structural materials with enhanced mechanical properties,” Pastewka said. “These types of materials can have large implications for automotive or aircraft design, but this research is trying to understand their properties at the fundamental level.”

In combination with the experimental groups of Ruth Schwaiger at the Karlsruhe Institute of Technology (now at Forschungszentrum Jülich) and Guang-Ping Zhang at the Shenyang National Laboratory for Materials Science, the team unraveled their mechanical properties at the nanoscale, by combining the high-fidelity experiments with the ability to observe nanosecond, atomic interactions in molecular dynamics simulations. The team’s recent work, focused on nanolaminates made of copper and gold, was published in MRS Communications.

Contact details

Nanolaminates are a class of composites, meaning they are made up of multiple materials, which exhibit properties that significantly differ from the sum of the individual parts. The interface between the individual nanolaminate layers (in many cases, only several nanometers thick) provide resistance to irreversible deformation of the atomic-level crystal structure. The composite material then exhibits larger strength than the individual components.

In order to design materials with these specialized properties, researchers need to understand how the material reacts to its environment, specifically to external stress. An elegant way of testing the mechanical properties is to manufacture small “pillars” of the material, typically by removing the material surrounding the pillar using a focused ion beam. These pillars are then deformed with a hard flat punch while researchers measure the applied force. When researchers interpret these experiments, though, they don’t often take into account that surfaces—of the pillar and of the flat punch—are never perfectly flat.

While many materials look smooth to the naked eye, at the atomic level, every material exhibits rough, uneven surfaces. Peaks on these surfaces serve as the points of intimate atomic contact in situations such as when pushing down on the pillar. The contact geometry is important to understand where materials are actually touching one another at the atomic scale.

“Roughness has implications in materials science, because the force is transmitted at just the contacting peaks,” Pastewka said. “Thinking about pressure, this means that the local pressure experienced by the surface can be orders of magnitude higher than the apparent applied pressure because the real area of contact is much smaller than we naively think it is. True contact between any two materials happens at the smallest scales.” The point where these interactions happens, the interfaces, is the focal point for researchers.

While the fine details of surface roughness are largely uncontrolled in experiments, computer simulations allow to control the position of every atom in the system and hence creating surfaces that are perfectly flat or that have controlled roughness.

The team applied pressure to different-sized nanopillars with controlled roughness, and then compared the results with experiments. The simulations showed that perfectly flat surfaces lead to homogeneous deformation of the pillar, but introducing roughness induced failure of the pillar through “shear bands”. These shear-bands are also observed in experiments. Shear bands start deforming a structure on a local level and continue deformation along “shear-bands,” which leads eventually to fractures. The simulations revealed that a simple atomic step on the surface is sufficient to induce failure through shear banding. The type of deformation experienced by the material is highly sensitive to the small-scale features of the surface.

In order to simulate pillars large enough to get an accurate representation of the experimental nanolaminates, the researchers needed access to HPC. “We need to do large-scale simulations in our research so we can connect to the experiments,” Pastewka said. “Our largest simulations contain around half a billion atoms and are carried out at the same scale as the experiments, something that can only be simulated on leading supercomputing resources such as those at GCS. Simulation results match the experiments both qualitatively and quantitatively.” While the experiments serve to validate simulation results, the simulations allow monitoring the motion of every individual atom and to control every detail of the virtual reality of the simulation, including surface roughness.

These results are a first step to designing nanolaminate materials that avoid failure through shear-banding. The team’s research helped clarify that shear-banding instability is tied to surface roughness. While surface roughness cannot be avoided, research should focus on designing materials that do not stabilize shear-bands. The team suggests that this could be achieved by looking for nanolaminates with components whose elastic constants match closely.

Material progress

The team’s nanolaminate research has laid the groundwork for its next focus area—friction and wear. Pastewka indicated that studying friction adds a significant challenge for both experimentalists and computational scientists, but that the team’s nanolaminate research can help inform models used in friction simulations. Nanolaminates are useful model systems for friction research because experimentally the deformation of the initially straight layers can be traced by just looking at them. Compared to the relatively straight, flat, and uniform geometry of the pillar surface, studying friction requires that the researchers focus on spherical objects’ contacts with flat surfaces, a more complicated computational challenge.

That said, HPC can help enable insights into friction models that would otherwise be impossible to observe. “If you run a friction experiment, you can only observe things from the past because the interface is buried,” Pastewka said. “If you have to wait to look at the surface after the experiment, most of the interesting things have already happened. We know that nanolaminates have this straight geometry, and trace while they deform. Friction experiments have shown us patterns and vortices that look almost like cloud formation. Looking at these nanolaminates experimentally has opened up very interesting questions, because we can see phenomena that aren’t well understood, but then we can use computing to try and make sense of pattern formation.”


Source: Eric Gedenk,  Gauss Centre for Supercomputing (GCS)

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Supercomputers Streamline Prediction of Dangerous Arrhythmia

June 2, 2020

Heart arrhythmia can prove deadly, contributing to the hundreds of thousands of deaths from cardiac arrest in the U.S. every year. Unfortunately, many of those arrhythmia are induced as side effects from various medicati Read more…

By Staff report

Indiana University to Deploy Jetstream 2 Cloud with AMD, Nvidia Technology

June 2, 2020

Indiana University has been awarded a $10 million NSF grant to build ‘Jetstream 2,’ a cloud computing system that will provide 8 aggregate petaflops of computing capability in support of data analysis and AI workload Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been instrumental to AMD’s datacenter market resurgence. Nanomet Read more…

By Doug Black

Supercomputer-Powered Protein Simulations Approach Lab Accuracy

June 1, 2020

Protein simulations have dominated the supercomputing conversation of late as supercomputers around the world race to simulate the viral proteins of COVID-19 as accurately as possible and simulate potential bindings in t Read more…

By Oliver Peckham

HPC Career Notes: June 2020 Edition

June 1, 2020

In this monthly feature, we'll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it's a promotion, new company hire, or even an accolade, we've got Read more…

By Mariana Iriarte

AWS Solution Channel

Computational Fluid Dynamics on AWS

Over the past 30 years Computational Fluid Dynamics (CFD) has grown to become a key part of many engineering design processes. From aircraft design to modelling the blood flow in our bodies, the ability to understand the behaviour of fluids has enabled countless innovations and improved the time to market for many products. Read more…

Supercomputer Modeling Shows How COVID-19 Spreads Through Populations

May 30, 2020

As many states begin to loosen the lockdowns and stay-at-home orders that have forced most Americans inside for the past two months, researchers are poring over the data, looking for signs of the dreaded second peak of t Read more…

By Oliver Peckham

Indiana University to Deploy Jetstream 2 Cloud with AMD, Nvidia Technology

June 2, 2020

Indiana University has been awarded a $10 million NSF grant to build ‘Jetstream 2,’ a cloud computing system that will provide 8 aggregate petaflops of comp Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

COVID-19 HPC Consortium Expands to Europe, Reports on Research Projects

May 28, 2020

The COVID-19 HPC Consortium, a public-private effort delivering free access to HPC processing for scientists pursuing coronavirus research – some utilizing AI Read more…

By Doug Black

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

IBM Boosts Deep Learning Accuracy on Memristive Chips

May 27, 2020

IBM researchers have taken another step towards making in-memory computing based on phase change (PCM) memory devices a reality. Papers in Nature and Frontiers Read more…

By John Russell

Hats Over Hearts: Remembering Rich Brueckner

May 26, 2020

HPCwire and all of the Tabor Communications family are saddened by last week’s passing of Rich Brueckner. He was the ever-optimistic man in the Red Hat presiding over the InsideHPC media portfolio for the past decade and a constant presence at HPC’s most important events. Read more…

Nvidia Q1 Earnings Top Expectations, Datacenter Revenue Breaks $1B

May 22, 2020

Nvidia’s seemingly endless roll continued in the first quarter with the company announcing blockbuster earnings that exceeded Wall Street expectations. Nvidia Read more…

By Doug Black

Microsoft’s Massive AI Supercomputer on Azure: 285k CPU Cores, 10k GPUs

May 20, 2020

Microsoft has unveiled a supercomputing monster – among the world’s five most powerful, according to the company – aimed at what is known in scientific an Read more…

By Doug Black

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Contributors

Tech Conferences Are Being Canceled Due to Coronavirus

March 3, 2020

Several conferences scheduled to take place in the coming weeks, including Nvidia’s GPU Technology Conference (GTC) and the Strata Data + AI conference, have Read more…

By Alex Woodie

Exascale Watch: El Capitan Will Use AMD CPUs & GPUs to Reach 2 Exaflops

March 4, 2020

HPE and its collaborators reported today that El Capitan, the forthcoming exascale supercomputer to be sited at Lawrence Livermore National Laboratory and serve Read more…

By John Russell

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This