University Selects Fujitsu Cloud Service

December 19, 2013

TOKYO, Japan, Dec. 19 — Fujitsu today announced that the University of Tokyo’s Research Center for Advanced Science and Technology (RCAST) has selected Fujitsu’s cloud service for analytical simulations, the FUJITSU Technical Computing Solution TC Cloud (TC Cloud), with the aim of accelerating research into new drugs using in silico drug discovery techniques.

The Fujitsu TC Cloud service is run on a system comprised of FUJITSU Server PRIMERGY CX250 S2/CX270 S2 x86 servers that deliver over 230 teraflops of computing performance from more than 10,000 CPU cores and over 250 teraflops of GPGPU acceleration, making it one of Japan’s largest systems.

This service is scheduled to commence from January 1, 2014. As one of Japan’s largest cloud-based HPC services, it is expected to provide a platform for Japan’s drug discovery research.

As a cloud-based service, TC Cloud offers a large-scale computing environment without the power consumption restrictions that otherwise would be faced by the university. It also provides the same level of convenience as an on-campus research environment. Moreover, the level of computing resources can be flexibly upgraded in the future as the scale of the research expands.

As exemplified by this cloud service provided to RCAST, Fujitsu intends to expand application of TC Cloud in the field of drug discovery as part of its initiatives to promote health and wellbeing in society through the use of ICT.

Background to the Deployment

Employing computer-based in silico drug discovery techniques to develop pharmaceuticals, RCAST is pursuing research into breakthrough drug treatments for such indications as cancer and lifestyle diseases.

Researching new drugs for the era of personalized medicine requires both conventional physical testing as well as computer simulation technology to understand the behavior of proteins in the human body. Processing the huge volume of calculations generated through simulations has required a large-scale, high-performance computing environment. However, an issue that RCAST had to consider was the restriction on energy consumption within the University of Tokyo if it were to build its own research environment. Moreover, another issue was that RCAST hoped to flexibly expand its computing resources in line with the scale of future research needs.

About the TC Cloud Service

To overcome these issues, RCAST decided to use a private cloud service that delivers one of Japan’s largest simulation environments for in silico drug discovery.

The TC Cloud service has the following features.

1. Computing environment

  • Hardware: FUJITSU Server PRIMERGY CX250 S2/CX270 S2 x86 servers
  • CPU: Over 10,000 cores with theoretical peak performance of over 230 teraflops
  • GPGPU: Theoretical peak performance of over 250 teraflops

2. Storage

  • Hardware: FUJITSU Storage ETERNUS DX80 S2
  • File system: FEFS high-performance scalable file system software, which Fujitsu developed based on technology employed in the K computer

3. Pre/post environment

Through the use of RVEC, a high-speed virtual desktop display technology that can display video as well as high-resolution images, the service enables input data preparation (pre-processing) from clients on the University of Tokyo’s network and also enables remote visualization (post-processing) of simulation results.

4. Network connection environment

For communications between the University of Tokyo and the Fujitsu datacenter, the service uses a high-speed dedicated network connected to the SINET4 Science Information Network.

Future Plans

RCAST is scheduled to start using TC Cloud from January 1, 2014. This service will provide an environment in which it will be possible to fully utilize simulations for in silico drug discovery research and the promotion of practical research, which in the past has been difficult due to the excessively long time required for simulations. It is therefore anticipated that this service will contribute to the discovery of new breakthrough drugs that had been difficult to develop using traditional experimental techniques. Moving forward, it is expected that joint research will be conducted together with pharmaceutical companies and others in the private sector, using the service as a platform for drug discovery research in Japan.

For its part, Fujitsu has world-class technology and talent in in silico drug discovery, ranging from theoretical to practical applications. By combining the expertise gained in the construction and operational support of this cloud service with its original small molecule drug design and evaluation technology, Fujitsu intends to expand the application of TC Cloud in the field of drug discovery as part of its initiatives to promote the health and wellbeing of society through the use of ICT.

Comment from Professor Tatsuhiko Kodama of the University of Tokyo’s RCAST

“Improvements in computer performance have enabled detailed simulations of the in vivo effects of drug compound candidates. Through the deployment of one of the largest HPC cloud services in Japan dedicated to drug discovery, we will be able to use a simulation environment for accelerating the development of highly effective drug treatments. We seek to develop breakthrough drugs by leveraging this cloud service in combination with drug discovery research results that RCAST has accumulated.”

—–

Source: Fujitsu

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Microsoft, Intel Unveil FPGA-driven Project Brainwave

August 23, 2017

We know about the seeming light-speed processing power of FPGAs and the natural fit they pose for data-dense AI workloads. But we also know that FPGAs present usability and programmability problems that flummox IT shops. Read more…

By Doug Black

China Plans 2019 Exascale Machine To Grow Sea Power

August 23, 2017

The glory of having the world's fastest supercomputer, as measured by the Linpack benchmark, has been China's for four years running, first with the 33-petaflops Tianhe-2 and currently with the 93-petaflops TaihuLight. T Read more…

By Tiffany Trader

Study Identifies Best Practices for Public-Private HPC Engagement

August 22, 2017

What's the best way for HPC centers in the public sphere to engage with private industry partners to boost the competitiveness of the companies and the larger communities? That question is at the heart of a new study pub Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Leveraging Deep Learning for Fraud Detection

Advancements in computing technologies and the expanding use of e-commerce platforms have dramatically increased the risk of fraud for financial services companies and their customers. Read more…

Google Launches Site to Share its NYC-based Algorithm Research

August 22, 2017

Much of Google’s algorithm development occurs in groups scattered throughout New York City. Yesterday, Google launched a single website - NYC Algorithms and Optimization Team page - to provide a deeper view into all of Read more…

By John Russell

Microsoft, Intel Unveil FPGA-driven Project Brainwave

August 23, 2017

We know about the seeming light-speed processing power of FPGAs and the natural fit they pose for data-dense AI workloads. But we also know that FPGAs present u Read more…

By Doug Black

China Plans 2019 Exascale Machine To Grow Sea Power

August 23, 2017

The glory of having the world's fastest supercomputer, as measured by the Linpack benchmark, has been China's for four years running, first with the 33-petaflop Read more…

By Tiffany Trader

Study Identifies Best Practices for Public-Private HPC Engagement

August 22, 2017

What's the best way for HPC centers in the public sphere to engage with private industry partners to boost the competitiveness of the companies and the larger c Read more…

By Tiffany Trader

Tech Giants Outline Battle Plans for Future HPC Market

August 21, 2017

Four companies engaged in a cage fight for leadership in the emerging HPC market of the 2020s are, despite deep differences in some areas, in violent agreement Read more…

By Doug Black

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capabilities to the cloud. Terms of the acquisition were not disclosed. Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system i Read more…

By Tiffany Trader

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based s Read more…

By John Russell

Deep Learning Thrives in Cancer Moonshot

August 8, 2017

The U.S. War on Cancer, certainly a worthy cause, is a collection of programs stretching back more than 40 years and abiding under many banners. The latest is t Read more…

By John Russell

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Leading Solution Providers

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This