UNM’s CQuIC to Collaborate with CU-Boulder as Part of NSF’s Quantum Leap Challenge Institutes

July 30, 2020

July 30, 2020 — The National Science Foundation (NSF) recently announced a $25 million award to launch a new quantum information science and engineering research center led by the University of Colorado-Boulder. The University of New Mexico’s Center for Quantum Information and Control (CQuIC) is part of the CU-led collaboration titled Quantum Systems through Entangled Science and Engineering or Q-SEnSE.  This is one of three new Quantum Leap Challenge Institutes (QLCI) inaugurated by NSF, aligned with the U.S. National Quantum Initiative.

Quantum phenomena have puzzled and delighted scientists for over a century, revealing unique, counter-intuitive characteristics of matter like superposition and entanglement. For four decades, the NSF has worked to enable breakthroughs in quantum information science and engineering that harness what researchers have learned about quantum phenomena to develop technologies like quantum computers, sensors, and communications. These quantum technologies will have enormous consequences for the national and global economy. To unleash that potential, researchers must overcome several major, fundamental challenges in quantum information science and engineering.

The new QLCI Q-SEnSE Center will be led by physicist Jun Ye, Director of the CUbit Quantum Initiative, in a partnership with 11 other research organizations in the United States and abroad. The Center is named as a nod to its focus on building close ties between scientists and engineers. Together, these pioneers will explore several “grand challenges.” They include how exotic quantum phenomena, such as quantum entanglement, will advance new frontiers in measurement science; how quantum sensing can help researchers to discover new fundamental physics; and how researchers can turn those advancements into real-world technologies.

UNM’s role will be led by Ivan Deutsch, Director of CQuIC and Regents’ Professor in the Department of Physics and Astronomy. CQuIC researchers will pursue fundamental research to understand how one can harness quantum complexity for metrological advantage and apply this in next-generation experiential platforms.

“CQuIC, through Q-SEnSE, and other NSF Quantum Leap Challenge Institutes will tackle the goals of the NQI head-on including addressing basic research in QIS, expanding and promoting the development and inclusion of multidisciplinary curriculum and research opportunities for QIS at the undergraduate, graduate and postdoctoral level,” said Deutsch. “CQuIC will also play a central role in Quantum Information Science education and workforce development.”

The NSF launched the Quantum Leap Challenges Institutes (QLCI) program in February 2019 and is a part of NSF’s 10 Big Ideas. In partnership with the White House Office of Science and Technology Policy, the NSF recently announced the $75 million award for three new institutes designed to have a tangible impact in solving these problems over the next five years. Additional institutes will be led by the University of Illinois, Urbana-Champaign and the University of California, Berkeley.

These institutes are a central piece of NSF’s response to key federal initiatives to advance quantum information science, including the National Quantum Initiative Act of 2018 and the White House’s ongoing focus on American leadership in emerging technologies. Quantum Leap Challenge Institutes also form the centerpiece of NSF’s Quantum Leap, an ongoing, agency-wide effort to enable quantum systems research and development.

“Quantum information science has the potential to change the world. This requires us to answer some fundamental research questions or that potential will go unrealized,” said Dr. Sethuraman Panchanathan, NSF director. “Through the Quantum Leap Challenge Institutes, NSF is making targeted investments. Within five years, we are confident these institutes can make tangible advances in this field—to help carry us into a true quantum revolution.”

“The most precise measurements are limited noise. At the most fundamental level when all technical noise sources are removed, noise arises from the quantum fluctuations associated with the famous Heisenberg Uncertainty Principle,” said Deutsch. “By employing special quantum states of light and matter, one can reduce these quantum fluctuations and enhance incredibly precise measurements for practical applications, like precise GPS for improved navigation, and fundamental studies of the universe like observing gravity waves or detecting dark matter. CQuIC’s Quantum Information Scientists will investigate how one can create these special quantum states, both in foundational theory and experiments based on ultra-cold atomic gases and lasers.”

Additionally, an important goal of NSF’s Quantum Leap Challenge Institutes (QLCI) and more broadly the National Quantum Initiative is to increase education for the quantum-ready workforce. UNM will play an essential role in this endeavor with the development of interdisciplinary training at the Masters and Ph.D. level, with new courses and degrees. Coursework will tie together science and engineering aspects in computer science & engineering, chemistry, and physics. Currently, UNM is developing a new MS in Quantum Computer Engineering in the Department of Electrical & Computer Engineering and a Ph.D. concentration in Quantum Information Science (QIS) that will span the College of Arts & Sciences and the School of Engineering.

“As QIS is intrinsically interdisciplinary, bringing together departments and colleges is essential for the well-educated quantum workforce,” said Deutsch. “At the undergraduate level, we are developing new courses, cross-listed between departments to introduce students to the fundamentals of QIS.  We are also working with our partner institutions in the new QLCI to provide practical experience through internships in industry and elsewhere.”

The new center emerges, in part, from decades of research by Ye and his students and colleagues on atomic clocks—devices that use networks of strontium atoms to track the passage of time with previously unimaginable accuracy. Such clocks, he added, could also become precise navigational or scientific sensors, capable of detecting even minute shifts in Earth’s gravitational pull.

“Imagine if we can build robust quantum systems that can go outside of our labs, that can completely change how we sense the physical world, how we navigate and how we communicate with each other,” said Ye. “We’re asking how we can take advantage of recent advances in quantum physics to solve useful problems for society.”

The new NSF center will work toward that goal. Over five years, Ye, colleagues at CU Boulder and its partner organizations, will not only explore the fundamental physics underlying devices like atomic clocks. They’ll also partner with engineers to turn those dynamics into tools that anyone can use.

In addition to UNM, the new center will include researchers from Harvard University, MIT, Stanford University, University of Delaware, University of Oregon and the University of Innsbruck in Austria. Several government labs, including NIST, Los Alamos National Laboratory, MIT Lincoln Laboratory and Sandia National Laboratory, will play major roles in the initiative.

For more information, visit Q-SEnSE. For additional information on UNM’s quantum research efforts, visit CQuIC.


Source: Steve Carr, The University of New Mexico

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Research senior analyst Steve Conway, who closely tracks HPC, AI, Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, and this day of contemplation is meant to provide all of us Read more…

Intel Announces Hala Point – World’s Largest Neuromorphic System for Sustainable AI

April 22, 2024

As we find ourselves on the brink of a technological revolution, the need for efficient and sustainable computing solutions has never been more critical.  A computer system that can mimic the way humans process and s Read more…

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Resear Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire