UNM’s CQuIC to Collaborate with CU-Boulder as Part of NSF’s Quantum Leap Challenge Institutes

July 30, 2020

July 30, 2020 — The National Science Foundation (NSF) recently announced a $25 million award to launch a new quantum information science and engineering research center led by the University of Colorado-Boulder. The University of New Mexico’s Center for Quantum Information and Control (CQuIC) is part of the CU-led collaboration titled Quantum Systems through Entangled Science and Engineering or Q-SEnSE.  This is one of three new Quantum Leap Challenge Institutes (QLCI) inaugurated by NSF, aligned with the U.S. National Quantum Initiative.

Quantum phenomena have puzzled and delighted scientists for over a century, revealing unique, counter-intuitive characteristics of matter like superposition and entanglement. For four decades, the NSF has worked to enable breakthroughs in quantum information science and engineering that harness what researchers have learned about quantum phenomena to develop technologies like quantum computers, sensors, and communications. These quantum technologies will have enormous consequences for the national and global economy. To unleash that potential, researchers must overcome several major, fundamental challenges in quantum information science and engineering.

The new QLCI Q-SEnSE Center will be led by physicist Jun Ye, Director of the CUbit Quantum Initiative, in a partnership with 11 other research organizations in the United States and abroad. The Center is named as a nod to its focus on building close ties between scientists and engineers. Together, these pioneers will explore several “grand challenges.” They include how exotic quantum phenomena, such as quantum entanglement, will advance new frontiers in measurement science; how quantum sensing can help researchers to discover new fundamental physics; and how researchers can turn those advancements into real-world technologies.

UNM’s role will be led by Ivan Deutsch, Director of CQuIC and Regents’ Professor in the Department of Physics and Astronomy. CQuIC researchers will pursue fundamental research to understand how one can harness quantum complexity for metrological advantage and apply this in next-generation experiential platforms.

“CQuIC, through Q-SEnSE, and other NSF Quantum Leap Challenge Institutes will tackle the goals of the NQI head-on including addressing basic research in QIS, expanding and promoting the development and inclusion of multidisciplinary curriculum and research opportunities for QIS at the undergraduate, graduate and postdoctoral level,” said Deutsch. “CQuIC will also play a central role in Quantum Information Science education and workforce development.”

The NSF launched the Quantum Leap Challenges Institutes (QLCI) program in February 2019 and is a part of NSF’s 10 Big Ideas. In partnership with the White House Office of Science and Technology Policy, the NSF recently announced the $75 million award for three new institutes designed to have a tangible impact in solving these problems over the next five years. Additional institutes will be led by the University of Illinois, Urbana-Champaign and the University of California, Berkeley.

These institutes are a central piece of NSF’s response to key federal initiatives to advance quantum information science, including the National Quantum Initiative Act of 2018 and the White House’s ongoing focus on American leadership in emerging technologies. Quantum Leap Challenge Institutes also form the centerpiece of NSF’s Quantum Leap, an ongoing, agency-wide effort to enable quantum systems research and development.

“Quantum information science has the potential to change the world. This requires us to answer some fundamental research questions or that potential will go unrealized,” said Dr. Sethuraman Panchanathan, NSF director. “Through the Quantum Leap Challenge Institutes, NSF is making targeted investments. Within five years, we are confident these institutes can make tangible advances in this field—to help carry us into a true quantum revolution.”

“The most precise measurements are limited noise. At the most fundamental level when all technical noise sources are removed, noise arises from the quantum fluctuations associated with the famous Heisenberg Uncertainty Principle,” said Deutsch. “By employing special quantum states of light and matter, one can reduce these quantum fluctuations and enhance incredibly precise measurements for practical applications, like precise GPS for improved navigation, and fundamental studies of the universe like observing gravity waves or detecting dark matter. CQuIC’s Quantum Information Scientists will investigate how one can create these special quantum states, both in foundational theory and experiments based on ultra-cold atomic gases and lasers.”

Additionally, an important goal of NSF’s Quantum Leap Challenge Institutes (QLCI) and more broadly the National Quantum Initiative is to increase education for the quantum-ready workforce. UNM will play an essential role in this endeavor with the development of interdisciplinary training at the Masters and Ph.D. level, with new courses and degrees. Coursework will tie together science and engineering aspects in computer science & engineering, chemistry, and physics. Currently, UNM is developing a new MS in Quantum Computer Engineering in the Department of Electrical & Computer Engineering and a Ph.D. concentration in Quantum Information Science (QIS) that will span the College of Arts & Sciences and the School of Engineering.

“As QIS is intrinsically interdisciplinary, bringing together departments and colleges is essential for the well-educated quantum workforce,” said Deutsch. “At the undergraduate level, we are developing new courses, cross-listed between departments to introduce students to the fundamentals of QIS.  We are also working with our partner institutions in the new QLCI to provide practical experience through internships in industry and elsewhere.”

The new center emerges, in part, from decades of research by Ye and his students and colleagues on atomic clocks—devices that use networks of strontium atoms to track the passage of time with previously unimaginable accuracy. Such clocks, he added, could also become precise navigational or scientific sensors, capable of detecting even minute shifts in Earth’s gravitational pull.

“Imagine if we can build robust quantum systems that can go outside of our labs, that can completely change how we sense the physical world, how we navigate and how we communicate with each other,” said Ye. “We’re asking how we can take advantage of recent advances in quantum physics to solve useful problems for society.”

The new NSF center will work toward that goal. Over five years, Ye, colleagues at CU Boulder and its partner organizations, will not only explore the fundamental physics underlying devices like atomic clocks. They’ll also partner with engineers to turn those dynamics into tools that anyone can use.

In addition to UNM, the new center will include researchers from Harvard University, MIT, Stanford University, University of Delaware, University of Oregon and the University of Innsbruck in Austria. Several government labs, including NIST, Los Alamos National Laboratory, MIT Lincoln Laboratory and Sandia National Laboratory, will play major roles in the initiative.

For more information, visit Q-SEnSE. For additional information on UNM’s quantum research efforts, visit CQuIC.


Source: Steve Carr, The University of New Mexico

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

OpenHPC Progress Report – v2.0, More Recipes, Cloud and Arm Support, Says Schulz

October 26, 2020

Launched in late 2015 and transitioned to a Linux Foundation Project in 2016, OpenHPC has marched quietly but steadily forward. Its goal “to provide a reference collection of open-source HPC software components and bes Read more…

By John Russell

NASA Uses Supercomputing to Measure Carbon in the World’s Trees

October 22, 2020

Trees constitute one of the world’s most important carbon sinks, pulling enormous amounts of carbon dioxide from the atmosphere and storing the carbon in their trunks and the surrounding soil. Measuring this carbon sto Read more…

By Oliver Peckham

Nvidia Dominates (Again) Latest MLPerf Inference Results

October 22, 2020

The two-year-old AI benchmarking group MLPerf.org released its second set of inferencing results yesterday and again, as in the most recent MLPerf training results (July 2020), it was almost entirely The Nvidia Show, a p Read more…

By John Russell

With Optane Gaining, Intel Exits NAND Flash

October 21, 2020

In a sign that its 3D XPoint memory technology is gaining traction, Intel Corp. is departing the NAND flash memory and storage market with the sale of its manufacturing base in China to SK Hynix of South Korea. The $9 Read more…

By George Leopold

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing another major EuroHPC design win. Finnish supercomputing cent Read more…

By Oliver Peckham

AWS Solution Channel

Live Webinar: AWS & Intel Research Webinar Series – Fast scaling research workloads on the cloud

Date: 27 Oct – 5 Nov

Join us for the AWS and Intel Research Webinar series.

You will learn how we help researchers process complex workloads, quickly analyze massive data pipelines, store petabytes of data, and advance research using transformative technologies. Read more…

Intel® HPC + AI Pavilion

Berlin Institute of Health: Putting HPC to Work for the World

Researchers from the Center for Digital Health at the Berlin Institute of Health (BIH) are using science to understand the pathophysiology of COVID-19, which can help to inform the development of targeted treatments. Read more…

HPE to Build Australia’s Most Powerful Supercomputer for Pawsey

October 20, 2020

The Pawsey Supercomputing Centre in Perth, Western Australia, has had a busy year. Pawsey typically spends much of its time looking to the stars, working with a variety of observatories and astronomers – but when COVID Read more…

By Oliver Peckham

OpenHPC Progress Report – v2.0, More Recipes, Cloud and Arm Support, Says Schulz

October 26, 2020

Launched in late 2015 and transitioned to a Linux Foundation Project in 2016, OpenHPC has marched quietly but steadily forward. Its goal “to provide a referen Read more…

By John Russell

Nvidia Dominates (Again) Latest MLPerf Inference Results

October 22, 2020

The two-year-old AI benchmarking group MLPerf.org released its second set of inferencing results yesterday and again, as in the most recent MLPerf training resu Read more…

By John Russell

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing a Read more…

By Oliver Peckham

HPE to Build Australia’s Most Powerful Supercomputer for Pawsey

October 20, 2020

The Pawsey Supercomputing Centre in Perth, Western Australia, has had a busy year. Pawsey typically spends much of its time looking to the stars, working with a Read more…

By Oliver Peckham

DDN-Tintri Showcases Technology Integration with Two New Products

October 20, 2020

DDN, a long-time leader in HPC storage, announced two new products today and provided more detail around its strategy for integrating DDN HPC technologies with Read more…

By John Russell

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

ROI: Is HPC Worth It? What Can We Actually Measure?

October 15, 2020

HPC enables innovation and discovery. We all seem to agree on that. Is there a good way to quantify how much that’s worth? Thanks to a sponsored white pape Read more…

By Addison Snell, Intersect360 Research

Supercomputer-Powered Research Uncovers Signs of ‘Bradykinin Storm’ That May Explain COVID-19 Symptoms

July 28, 2020

Doctors and medical researchers have struggled to pinpoint – let alone explain – the deluge of symptoms induced by COVID-19 infections in patients, and what Read more…

By Oliver Peckham

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

Intel’s 7nm Slip Raises Questions About Ponte Vecchio GPU, Aurora Supercomputer

July 30, 2020

During its second-quarter earnings call, Intel announced a one-year delay of its 7nm process technology, which it says it will create an approximate six-month shift for its CPU product timing relative to prior expectations. The primary issue is a defect mode in the 7nm process that resulted in yield degradation... Read more…

By Tiffany Trader

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for hi Read more…

By Tiffany Trader

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Aurora’s Troubles Move Frontier into Pole Exascale Position

October 1, 2020

Intel’s 7nm node delay has raised questions about the status of the Aurora supercomputer that was scheduled to be stood up at Argonne National Laboratory next year. Aurora was in the running to be the United States’ first exascale supercomputer although it was on a contemporaneous timeline with... Read more…

By Tiffany Trader

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Leading Solution Providers

Contributors

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at c Read more…

By Oliver Peckham

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

Microsoft Azure Adds A100 GPU Instances for ‘Supercomputer-Class AI’ in the Cloud

August 19, 2020

Microsoft Azure continues to infuse its cloud platform with HPC- and AI-directed technologies. Today the cloud services purveyor announced a new virtual machine Read more…

By Tiffany Trader

Oracle Cloud Infrastructure Powers Fugaku’s Storage, Scores IO500 Win

August 28, 2020

In June, RIKEN shook the supercomputing world with its Arm-based, Fujitsu-built juggernaut: Fugaku. The system, which weighs in at 415.5 Linpack petaflops, topp Read more…

By Oliver Peckham

DOD Orders Two AI-Focused Supercomputers from Liqid

August 24, 2020

The U.S. Department of Defense is making a big investment in data analytics and AI computing with the procurement of two HPC systems that will provide the High Read more…

By Tiffany Trader

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing a Read more…

By Oliver Peckham

Oracle Cloud Deepens HPC Embrace with Launch of A100 Instances, Plans for Arm, More 

September 22, 2020

Oracle Cloud Infrastructure (OCI) continued its steady ramp-up of HPC capabilities today with a flurry of announcements. Topping the list is general availabilit Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This