USC’s Information Sciences Institute Develops CASPER Compiler on Summit

June 14, 2021

June 14, 2021 — Using the Summit supercomputer at the US Department of Energy’s (DOE’s) Oak Ridge National Laboratory (ORNL), researchers from the University of Southern California’s Information Sciences Institute (ISI) have made significant progress toward achieving a major goal in scientific high-performance computing (HPC): creating a compiler to more easily port complex science codes between different supercomputer architectures.

Not unlike home computers built with different CPU chips, supercomputers at DOE’s Leadership Computing Facilities often employ different types of components that require software to be optimized for their specific architectures. This can present hurdles to scientists who want to run complex simulation codes on a variety of machines. For example, the Theta supercomputer at Argonne Leadership Computing Facility is based on the Intel Xeon Phi CPU, whereas the Summit supercomputer at the Oak Ridge Leadership Computing Facility (OLCF) uses NVIDIA Volta V100 GPU accelerators. Adapting a code written for Theta’s CPUs to run well on Summit’s GPUs can require extra time, effort, and expense.

ISI’s Compiler Abstractions Supporting high Performance on Extreme-Scale Resources (CASPER) project, led by ISI Research Team leader John Paul Walters, seeks to overcome those hurdles.

“We’ve been working to develop a compiler that takes domain-specific applications and emits high-performance, automatically scalable code,” Walters said. “You don’t want programmers to have to develop their code for one specific supercomputing architecture—you want its performance to be portable across many supercomputing architectures.”

Compilers are software tools used by programmers to take codes written in higher level languages, such as C++, and turn them into machine-level instructions the computers can understand and execute. CASPER’s compiler parses domain-specific languages (DSLs) to reduce the workload typically needed to port software into a different CPU architecture. Because DSLs target particular scientific domains, they give programmers a head start on revamping code because some of the work of integrating the scientific domain’s requirements has already been done.

“DSLs provide an abstraction to whoever is writing that code. So now, suddenly, you have a compiler that knows something about the domain that you’re targeting. You can make optimizations more easily,” Walters said.

The CASPER compiler is being developed around two unique DSLs: Halide, for writing high-performance image-processing codes for apps such as synthetic aperture radar (SAR), and PyOP2/Firedrake/UFL, for writing computational fluid dynamics (CFD) codes. For their work on Summit, the CASPER team tested how far they could scale up the applications to take advantage of the supercomputer’s vast array of nodes. The team had the most success scaling up Halide to 1,024 nodes.

The CASPER compiler is being developed around two unique DSLs: Halide, for writing high-performance image-processing codes for apps such as synthetic aperture radar, and PyOP2/Firedrake/UFL, for writing computational fluid dynamics codes. The team scaled up Halide to 1,024 nodes. This graph for a 16,000 × 16,000 dataset shows a nearly 200× speedup (for a 256× increase in resources), compared with a baseline algorithm called RITSAR. Image courtesy University of Southern California/ISI.

“Our biggest accomplishment so far is we’re getting really efficient scaling on thousands of cores, and we’ve even improved on it since then,” Walters said. “We’re getting a lot of insights into the CFD app’s scaling behavior—we haven’t seen it scale nearly as well as the SAR app, but we’re scaling the radar application beyond what I’ve seen before.”

Now that the ISI team has shown that Halide can scale up on Summit, the team is working to apply the advantages of its DSL approach to the CASPER compiler. A key next step is adding what the ISI team calls a “super optimizer”—an artificial intelligence-based auto-tuner that can identify improved schedules and better mapping approaches to give programmers the best-performing options. It can save time for programmers and improve the efficiency of their applications.

For a researcher writing an SAR app in the C programming language, which lacks any domain-specific optimizations, CASPER can provide Halide’s built-in optimizations—such as single instruction, multiple data vectorization, or GPU implementations—for acceleration. Halide also allows for the separation of implementation and data scheduling—which are usually mixed in C—so that the two algorithms can be tackled separately by different programmers or hopefully by a programmer with the auto-tuner.

“Now you can have the radar person focus on writing the radar algorithm separately from the performance person or auto-tuner writing the schedule,” Walters said. “You can make progress across both of these axes somewhat independently. You don’t need the radar expert to become an HPC expert and you don’t need the HPC experts to necessarily become the radar experts.”

The ISI team’s next goals include adding run time management support to autonomously improve an app’s performance by identifying imbalances and then make corresponding schedule changes. And, of course, Walters would like to start putting CASPER in the hands of researchers.

“My hope is that we can transition this kind of a compiler infrastructure to some of these domain experts so that we can see real applications being implemented,” Walters said. “I think that would also give us some insight into how we could improve on these kinds of applications. We want to continue to push forward and ensure that we’re actually able to support the next-generation applications in these domains.”

CASPER receives funding from the Defense Advanced Research Projects Agency (DARPA) Performant Automation of Parallel Program Assembly program. DARPA is an agency of the US Department of Defense. CASPER also receives support from the OLCF Director’s Discretionary Program; the OLCF is a DOE Office of Science User Facility at ORNL.

UT-Battelle LLC manages Oak Ridge National Laboratory for DOE’s Office of Science, the single largest supporter of basic research in the physical sciences in the United States. DOE’s Office of Science is working to address some of the most pressing challenges of our time. For more information, visit https://energy.gov/science.


Source: ORNL

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Verifying the Universe with Exascale Computers

July 30, 2021

The ExaSky project, one of the critical Earth and Space Science applications being solved by the US Department of Energy’s (DOE’s) Exascale Computing Project (ECP), is preparing to use the nation’s forthcoming exas Read more…

What’s After Exascale? The Internet of Workflows Says HPE’s Nicolas Dubé

July 29, 2021

With the race to exascale computing in its final leg, it’s natural to wonder what the Post Exascale Era will look like. Nicolas Dubé, VP and chief technologist for HPE’s HPC business unit, agrees and shared his vision at Supercomputing Frontiers Europe 2021 held last week. The next big thing, he told the virtual audience at SFE21, is something that will connect HPC and (broadly) all of IT – into what Dubé calls The Internet of Workflows. Read more…

How UK Scientists Developed Transformative, HPC-Powered Coronavirus Sequencing System

July 29, 2021

In November 2020, the COVID-19 Genomics UK Consortium (COG-UK) won the HPCwire Readers’ Choice Award for Best HPC Collaboration for its CLIMB-COVID sequencing project. Launched in March 2020, CLIMB-COVID has now resulted in the sequencing of over 675,000 coronavirus genomes – an increasingly critical task as variants like Delta threaten the tenuous prospect of a return to normalcy in much of the world. Read more…

KAUST Leverages Mixed Precision for Geospatial Data

July 28, 2021

For many computationally intensive tasks, exacting precision is not necessary for every step of the entire task to obtain a suitably precise result. The alternative is mixed-precision computing: using high precision wher Read more…

Oak Ridge Supercomputer Enables Next-Gen Jet Turbine Research

July 27, 2021

Air travel is notoriously carbon-inefficient, with many airlines going as far as to offer purchasable carbon offsets to ease the guilt over large-footprint travel. But even over just the last decade, major aircraft model Read more…

AWS Solution Channel

Data compression with increased performance and lower costs

Many customers associate a performance cost with data compression, but that’s not the case with Amazon FSx for Lustre. With FSx for Lustre, data compression reduces storage costs and increases aggregate file system throughput. Read more…

IBM and University of Tokyo Roll Out Quantum System One in Japan

July 27, 2021

IBM and the University of Tokyo today unveiled an IBM Quantum System One as part of the IBM-Japan quantum program announced in 2019. The system is the second IBM Quantum System One assembled outside the U.S. and follows Read more…

What’s After Exascale? The Internet of Workflows Says HPE’s Nicolas Dubé

July 29, 2021

With the race to exascale computing in its final leg, it’s natural to wonder what the Post Exascale Era will look like. Nicolas Dubé, VP and chief technologist for HPE’s HPC business unit, agrees and shared his vision at Supercomputing Frontiers Europe 2021 held last week. The next big thing, he told the virtual audience at SFE21, is something that will connect HPC and (broadly) all of IT – into what Dubé calls The Internet of Workflows. Read more…

How UK Scientists Developed Transformative, HPC-Powered Coronavirus Sequencing System

July 29, 2021

In November 2020, the COVID-19 Genomics UK Consortium (COG-UK) won the HPCwire Readers’ Choice Award for Best HPC Collaboration for its CLIMB-COVID sequencing project. Launched in March 2020, CLIMB-COVID has now resulted in the sequencing of over 675,000 coronavirus genomes – an increasingly critical task as variants like Delta threaten the tenuous prospect of a return to normalcy in much of the world. Read more…

IBM and University of Tokyo Roll Out Quantum System One in Japan

July 27, 2021

IBM and the University of Tokyo today unveiled an IBM Quantum System One as part of the IBM-Japan quantum program announced in 2019. The system is the second IB Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make it seem like it's two nodes behind? For Intel, the response was to change how it refers to its nodes with the aim of better reflecting its positioning within the leadership semiconductor manufacturing space. Intel revealed its new node nomenclature, and... Read more…

Will Approximation Drive Post-Moore’s Law HPC Gains?

July 26, 2021

“Hardware-based improvements are going to get more and more difficult,” said Neil Thompson, an innovation scholar at MIT’s Computer Science and Artificial Intelligence Lab (CSAIL). “I think that’s something that this crowd will probably, actually, be already familiar with.” Thompson, speaking... Read more…

With New Owner and New Roadmap, an Independent Omni-Path Is Staging a Comeback

July 23, 2021

Put on a shelf by Intel in 2019, Omni-Path faced a uncertain future, but under new custodian Cornelis Networks, OmniPath is looking to make a comeback as an independent high-performance interconnect solution. A "significant refresh" – called Omni-Path Express – is coming later this year according to the company. Cornelis Networks formed last September as a spinout of Intel's Omni-Path division. Read more…

Chameleon’s HPC Testbed Sharpens Its Edge, Presses ‘Replay’

July 22, 2021

“One way of saying what I do for a living is to say that I develop scientific instruments,” said Kate Keahey, a senior fellow at the University of Chicago a Read more…

Summer Reading: “High-Performance Computing Is at an Inflection Point”

July 21, 2021

At last month’s 11th International Symposium on Highly Efficient Accelerators and Reconfigurable Technologies (HEART), a group of researchers led by Martin Schulz of the Leibniz Supercomputing Center (Munich) presented a “position paper” in which they argue HPC architectural landscape... Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

Iran Gains HPC Capabilities with Launch of ‘Simorgh’ Supercomputer

May 18, 2021

Iran is said to be developing domestic supercomputing technology to advance the processing of scientific, economic, political and military data, and to strengthen the nation’s position in the age of AI and big data. On Sunday, Iran unveiled the Simorgh supercomputer, which will deliver.... Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

Leading Solution Providers

Contributors

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Q&A with Jim Keller, CTO of Tenstorrent, and an HPCwire Person to Watch in 2021

April 22, 2021

As part of our HPCwire Person to Watch series, we are happy to present our interview with Jim Keller, president and chief technology officer of Tenstorrent. One of the top chip architects of our time, Keller has had an impactful career. Read more…

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

Senate Debate on Bill to Remake NSF – the Endless Frontier Act – Begins

May 18, 2021

The U.S. Senate today opened floor debate on the Endless Frontier Act which seeks to remake and expand the National Science Foundation by creating a technology Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire