Using AI and Supercomputers, Researchers Remove One of the Biggest Roadblocks in Astrophysics

May 6, 2021

May 6, 2021 — Using a bit of machine learning magic, astrophysicists can now simulate vast, complex universes in a thousandth of the time it takes with conventional methods. The new approach will help usher in a new era in high-resolution cosmological simulations, its creators report in a study published on May 4, 2021 in the Proceedings of the National Academy of Sciences.

“At the moment, constraints on computation time usually mean we cannot simulate the universe at both high resolution and large volume,” says study lead author Yin Li, an astrophysicist at the Flatiron Institute in New York City. “With our new technique, it’s possible to have both efficiently. In the future, these AI-based methods will become the norm for certain applications.”

The new method developed by Li and his colleagues feeds a machine learning algorithm with models of a small region of space at both low and high resolutions. The algorithm learns how to upscale the low-res models to match the detail found in the high-res versions. Once trained, the code can take full-scale low-res models and generate ‘super-resolution’ simulations containing up to 512 times as many particles.

The process is akin to taking a blurry photograph and adding the missing details back in, making it sharp and clear.

Simulations of a region of space 100 million light-years square. The leftmost simulation ran at low resolution. Using machine learning, researchers upscaled the low-res model to create a high-resolution simulation (right). That simulation captures the same details as a conventional high-res model (middle) while requiring significantly fewer computational resources. [Credit: Y. Li et al./Proceedings of the National Academy of Sciences 2021]
Li is a recipient of the Leadership Resource Allocation (LRAC) on the Frontera supercomputer for the project, “Super resolution cosmological simulations of galaxies and quasars” (PI: Tiziana Di Matteo). Frontera, at the Texas Advanced Computing Center (TACC), is the fastest academic supercomputer in the world and the team is one of the largest users of this massive computing resources, which is funded by the U.S. National Science Foundation and began operations in 2019. To date, they have used more than 2.2 million node hours (each node contains 56 processing cores) on Frontera.

“In cosmological simulations, the dynamic range quickly makes this physically complex problem intractable,” said Tiziana Di Matteo of Carnegie Mellon University, a co-author on the paper. “Our new way forward is through the development of methods that leverage the AI revolution using Frontera resources, making “super-resolution” simulations possible.

Di Matteo, Croft and Ni are part of Carnegie Mellon’s National Science Foundation (NSF) Planning Institute for Artificial Intelligence in Physics, which supported this work, and members of Carnegie Mellon’s McWilliams Center for Cosmology.

The team’s hybrid approach involves combining petascale-plus hydrodynamic simulations with Neural Networks and other ML algorithms.

“Our goal is to create models of the entire observable Universe that incorporate information from higher resolution models of individual galaxies,” Di Matteo continued. “Frontera is ideal for this: allowing us to couple the physics and AI running on GPUs and CPUs, and enable us to reach detail which would be otherwise impossible.”

The upscaling brings significant savings in compute time. For a region in the universe roughly 500 million light-years across containing 134 million particles, existing methods would require 560 hours to churn out a high-res simulation using a single processing core. With the new approach, the researchers need only 36 minutes.

3D visualization of low-, high-, and super-resolution (LR, HR, and SR) dark matter density and velocity fields at z = 0. The top two rows show the LR and HR simulations, which share the same seed for initial conditions but are 512 times different in mass resolution. The bottom panels show the SR realization generated by our trained model. [Credit: Y. Li et al./Proceedings of the National Academy of Sciences 2021]
The results were even more dramatic when more particles were added to the simulation. For a universe 1,000 times as large with 134 billion particles, the researchers’ new method took 16 hours on a single graphics processing unit. Existing methods would take so long that they wouldn’t even be worth running without dedicated supercomputing resources, Li says.

Li is a joint research fellow at the Flatiron Institute’s Center for Computational Astrophysics and the Center for Computational Mathematics. He co-authored the study with Yueying Ni, Rupert Croft and Tiziana Di Matteo of Carnegie Mellon University; Simeon Bird of the University of California, Riverside; and Yu Feng of the University of California, Berkeley.

Cosmological simulations are indispensable for astrophysics. Scientists use the simulations to predict how the universe would look in various scenarios, such as if the dark energy pulling the universe apart varied over time. Telescope observations may then confirm whether the simulations’ predictions match reality. Creating testable predictions requires running simulations thousands of times, so faster modeling would be a big boon for the field.

Reducing the time it takes to run cosmological simulations “holds the potential of providing major advances in numerical cosmology and astrophysics,” says Di Matteo. “Cosmological simulations follow the history and fate of the universe, all the way to the formation of all galaxies and their black holes.”

So far, the new simulations only consider dark matter and the force of gravity. While this may seem like an oversimplification, gravity is by far the universe’s dominant force at large scales, and dark matter makes up 85 percent of all the ‘stuff’ in the cosmos. The particles in the simulation aren’t literal dark matter particles but are instead used as trackers to show how bits of dark matter move through the universe.

The team’s code used neural networks to predict how gravity would move dark matter around over time. Such networks ingest training data and run calculations using the information. The results are then compared to the expected outcome. With further training, the networks adapt and become more accurate.

The specific approach used by the researchers, called a generative adversarial network, pits two neural networks against each other. One network takes low-resolution simulations of the universe and uses them to generate high-resolution models. The other network tries to tell those simulations apart from ones made by conventional methods. Over time, both neural networks get better and better until, ultimately, the simulation generator wins out and creates fast simulations that look just like the slow conventional ones.

“We couldn’t get it to work for two years,” Li says, “and suddenly it started working. We got beautiful results that matched what we expected. We even did some blind tests ourselves, and most of us couldn’t tell which one was ‘real’ and which one was ‘fake.'”

Despite only being trained using small areas of space, the neural networks accurately replicated the large-scale structures that only appear in enormous simulations.

The simulations don’t capture everything, though. Because they focus only on dark matter and gravity, smaller-scale phenomena — such as star formation, supernovae and the effects of black holes — are left out. The researchers plan to extend their methods to include the forces responsible for such phenomena, and to run their neural networks ‘on the fly’ alongside conventional simulations to improve accuracy. “We don’t know exactly how to do that yet, but we’re making progress,” Li says.

Read a companion analysis by the group on arXiv.org


Source: TACC

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Intel’s Silicon Brain System a Blueprint for Future AI Computing Architectures

April 24, 2024

Intel is releasing a whole arsenal of AI chips and systems hoping something will stick in the market. Its latest entry is a neuromorphic system called Hala Point. The system includes Intel's research chip called Loihi 2, Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Research senior analyst Steve Conway, who closely tracks HPC, AI, Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, and this day of contemplation is meant to provide all of us Read more…

Intel Announces Hala Point – World’s Largest Neuromorphic System for Sustainable AI

April 22, 2024

As we find ourselves on the brink of a technological revolution, the need for efficient and sustainable computing solutions has never been more critical.  A computer system that can mimic the way humans process and s Read more…

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

Intel’s Silicon Brain System a Blueprint for Future AI Computing Architectures

April 24, 2024

Intel is releasing a whole arsenal of AI chips and systems hoping something will stick in the market. Its latest entry is a neuromorphic system called Hala Poin Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Resear Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire