UT Dallas Researcher Uses Supercomputers to Explore Nanopill Design

December 1, 2017

Dec. 1, 2017 — Imagine a microscopic gold pill that could travel to a specific location in your body and deliver a drug just where it is needed. This is the promise of plasmonic nanovesicles.

These minute capsules can navigate the bloodstream, and, when hit with a quick pulse of laser light, change shape to release their contents. It can then exit the body, leaving only the desired package.

This on-demand, light-triggered drug release method could transform medicine, especially the treatment of cancer. Clinicians are beginning to test plasmonic nanovesicles on head and neck tumors. They can also help efforts to study the nervous system in real-time and provide insights into how the brain works.

However, like many aspects of nanotechnology, the devil is in the details. Much remains unknown about the specific behavior of these nanoparticles – for instance, the wavelengths of light they respond to and how best to engineer them.

Writing in the October 2017 issue of Advanced Optical Materials, Zhenpeng Qin, an assistant professor of Mechanical Engineering and Bioengineering at the University of Texas at Dallas, his team, and collaborators from the University of Reims (Dr. Jaona Randrianalisoa), reported the results of computational investigations into the collective optical properties of complex plasmonic vesicles.

They used the Stampede and Lonestar supercomputers at the Texas Advanced Computing Center, as well as systems at the ROMEO Computing Center at the University of Reims Champagne-Ardenne and the San Diego Supercomputing Center (through the Extreme Science and Engineering Discovery Environment) to perform large-scale virtual experiments of light-struck vesicles.

“A lot of people make nanoparticles and observe them using electron microscopy,” Qin said. “But the computations give us a unique angle to the problem. They provide an improved understanding of the fundamental interactions and insights so we can better design these particles for specific applications.”

Striking Biomedical Gold

Gold nanoparticles are one promising example of a plasmonic nanomaterial. Unlike normal substances, plasmonic nanoparticles (typically made of noble metals) have unusual scattering, absorbance, and coupling properties due to their geometries and electromagnetic characteristics. One consequence of this is that they interact strongly with light and can be heated by visible and ultraviolet light, even at a distance, leading to structural changes in the particles, from melting to expansion to fragmentation.

Gold nanoparticle-coated liposomes — spherical sacs enclosing a watery core that can be used to carry drugs or other substances into the tissues — have been demonstrated as promising agents for light-induced content release. But these nanoparticles need to be able to clear the body through the renal system, which limits the size of the nanoparticles to less than few nanometers.

The specific shape of the nanoparticle — for instance, how close together the individual gold molecules are, how large the core is, and the size, shape, density and surface conditions of the nanoparticle — determines how, and how well, the nanoparticle functions and how it can be manipulated.

Qin has turned his attention in recent years to the dynamics of clusters of small gold nanoparticles with liposome cores, and their applications in both diagnostic and therapeutic areas.

“If we put the nanoparticles around a nano-vesicle, we can use laser light to pop open the vesicle and release molecules of interests,” he explained. “We have the capability to assemble a different number of particles around a vesicle by coating the vesicle in a layer of very small particles. How can we design this structure? It’s a quite interesting and complex problem. How do the nanoparticles interact with each other – how far are they apart, how many are there?”

Simulations Provide Fundamental and Practical Insights

To gain insights into the ways plasmonic nanoparticles work and how they can be optimally designed, Qin and colleagues use computer simulation in addition to laboratory experiments.

In their recent study, Qin and his team simulated various liposome core sizes, gold nanoparticle coating sizes, a wide range of coating densities, and random versus uniform coating organizations. The coatings include several hundred individual gold particles, which behave collectively.

“It is very simple to simulate one particle. You can do it on an ordinary computer, but we’re one of the first to looking into a complex vesicle,” Randrianalisoa said. “It is really exciting to observe how aggregates of nanoparticles surrounding the lipid core modify collectively the optical response of the system.”

The team used the discrete dipole approximation (DDA) computation method in order to make predictions of the optical absorption features of the gold-coated liposome systems. DDA allows one to compute the scattering of radiation by particles of arbitrary shape and organization. The method has the advantage of allowing the team to design new complex shapes and structures and to determine quantitatively what their optical absorption features will be.

The researchers found that the gold nanoparticles that make up the outer surface have to be sufficiently close together, or even overlapping, to absorb sufficient light for the delivery system to be effective. They identified an intermediate range of optical conditions referred to as the “black gold regime,” where the tightly packed gold nanoparticles respond to light at all wavelengths, which can be highly useful for a range of applications.

“We’d like to develop particles that interact with light in the near-infrared range – with wavelengths of around 700 to 900 nanometers — so they have a deeper penetration into the tissue,” Qin explained.

They anticipate that this study will provide design guidelines for nano-engineers and will have a significant impact on the further development of complex plasmonic nanostructures and vesicles for biomedical applications.

[In a separate study published in ACS Sensors in October 2017, Qin and collaborators showed the effectiveness of gold nanoparticles for assays that detect infectious diseases and other biological and chemical targets.]

Inspired by recent developments in optogenetics, which uses light to control cells (typically neurons) in living tissues, Qin and his team plan to use the technology to develop a versatile optically-triggered system to perform real-time studies of brain activity and behavior.

He hopes the fast release feature of the new technique will provide sufficient speed to study neuronal communication in neuroscience research.

“There are a lot of opportunities for using computations to understand fundamental interactions and mechanisms that we can’t measure,” Qin said. “That can feed back into our experimental research so we can better advance these different techniques to help people.”


Source: Aaron Dubrow, TACC

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Oracle Cloud Now Offers AMD Epyc Compute Instances

October 23, 2018

Even as a press report yesterday declared that Intel has abandoned its current effort to produce a 10nm chip – a report denied by Intel – looming rival AMD and Oracle today announced the availability of the first AMD Epyc processor-based instance on Oracle Cloud Infrastructure. Read more…

By Doug Black

Scripps, Nvidia Tackle AI Tools and Best Practices for Genomics and Health Sensors

October 23, 2018

Nvidia and the Scripps Research Translational Institute today announced a collaboration to develop AI and deep learning best practices, tools and infrastructure to accelerate AI applications using genomic and digital hea Read more…

By John Russell

Automated Optimization Boosts ResNet50 Performance by 1.77x

October 23, 2018

From supercomputers to cell phones, every system and software device in our digital panoply has a growing number of settings that, if not optimized, constrain performance, wasting precious cycles and watts. In the f Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

One Small Step Toward Mars: One Giant Leap for Supercomputing

Since the days of the Space Race between the U.S. and the former Soviet Union, we have continually sought ways to perform experiments in space. Read more…

IBM Accelerated Insights

Energy Matters: Evolving Holistic Approaches to Energy and Power Management in HPC

Energy costs of running clusters has always been a consideration when operating an infrastructure for high-performance computing (HPC).  As clusters become larger in the drive to the next levels of computing performance, energy efficiency has emerged as one of the foremost design goals.  Read more…

South Africa CHPC: Home Grown Dynasty

October 22, 2018

Before the build up to the final event in the 2018 Student Cluster Competition season (the SC18 competition in Dallas), I want to take a moment to write about one of the great inspirational stories of these competitions. Read more…

By Dan Olds

Automated Optimization Boosts ResNet50 Performance by 1.77x

October 23, 2018

From supercomputers to cell phones, every system and software device in our digital panoply has a growing number of settings that, if not optimized, constrain  Read more…

By Tiffany Trader

South Africa CHPC: Home Grown Dynasty

October 22, 2018

Before the build up to the final event in the 2018 Student Cluster Competition season (the SC18 competition in Dallas), I want to take a moment to write about o Read more…

By Dan Olds

Penguin Computing Launches Consultancy for Piecing AI Strategies Together

October 18, 2018

AI stands before the HPC industry as a beacon of great expectations, yet market research repeatedly shows that AI adoption is commonly stuck in the talking phas Read more…

By Tiffany Trader

When Water Quality—Not Quantity—Hinders HPC Cooling

October 18, 2018

Attention has been paid to the sheer quantity of water consumed by supercomputers’ cooling towers – and rightly so, as they can require thousands of gallons per minute to cool. But in the background, another factor can emerge, bottlenecking efficiency and raising costs: water quality. Read more…

By Oliver Peckham

Paper Offers ‘Proof’ of Quantum Advantage on Some Problems

October 18, 2018

Is quantum computing worth all the effort being poured into it or should we just wait for classical computing to catch up? An IBM blog today posed those questio Read more…

By John Russell

Dell EMC to Supply U Michigan’s Great Lakes Cluster

October 16, 2018

The University of Michigan (U-M) today announced Dell EMC is the lead vendor for U-M’s $4.8 million Great Lakes HPC cluster scheduled for deployment in first Read more…

By John Russell

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

Nvidia Platform Pushes GPUs into Machine Learning, High Performance Data Analytics

October 10, 2018

GPU leader Nvidia, generally associated with deep learning, autonomous vehicles and other higher-end enterprise and scientific workloads (and gaming, of course) Read more…

By Doug Black

TACC Wins Next NSF-funded Major Supercomputer

July 30, 2018

The Texas Advanced Computing Center (TACC) has won the next NSF-funded big supercomputer beating out rivals including the National Center for Supercomputing Ap Read more…

By John Russell

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

Requiem for a Phi: Knights Landing Discontinued

July 25, 2018

On Monday, Intel made public its end of life strategy for the Knights Landing "KNL" Phi product set. The announcement makes official what has already been wide Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

Leading Solution Providers

HPC on Wall Street 2018 Booth Video Tours Playlist

Arista

Dell EMC

IBM

Intel

RStor

VMWare

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

Aerodynamic Simulation Reveals Best Position in a Peloton of Cyclists

July 5, 2018

Eindhoven University of Technology (TU/e) and KU Leuven research group conducts the largest numerical simulation ever done in the sport industry and cycling discipline. The goal was to understand the aerodynamic interactions in the peloton, i.e., the main pack of cyclists in a race. Read more…

No Go for GloFo at 7nm; and the Fujitsu A64FX post-K CPU

September 5, 2018

It’s been a news worthy couple of weeks in the semiconductor and HPC industry. There were several HPC relevant disclosures at Hot Chips 2018 to whet appetites Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This