UVA Engineering Tapped to Lead $27.5 Million Center to Reinvent Computing

January 16, 2018

CHARLOTTESVILLE, Va., Jan. 16, 2018 — The University of Virginia School of Engineering & Applied Science has been selected to establish a $27.5 million national center to remove a bottleneck built into computer systems 70 years ago that is increasingly hindering technological advances today.

UVA Engineering’s new Center for Research in Intelligent Storage and Processing in Memory, or CRISP, will bring together researchers from eight universities to remove the separation between memories that store data and processors that operate on the data.

That separation has been part of all mainstream computing architectures since 1945, when John von Neumann, one of the pioneering computer scientists, first outlined how programmable computers should be structured. Over the years, processor speeds have improved much faster than memory and storage speeds, and also much faster than the speed at which wires can carry data back and forth.

These trends lead to what computer scientists call the “memory wall,” in which data access becomes a major performance bottleneck. The need for a solution is urgent, because of today’s rapidly growing data sets and the potential to use big data more effectively to find answers to complex societal challenges.

“Certain computations are just not feasible right now due to the huge amounts of data and the memory wall,” said Kevin Skadron, who chairs UVA Engineering’s Department of Computer Science and leads the new center. “One example is in medicine, where we can imagine mining massive data sets to look for new indicators of cancer. The scale of computation needed to make advances for health care and many other human endeavors, such as smart cities, autonomous transportation, and new astronomical discoveries, is not possible today. Our center will try to solve this problem by breaking down the memory-wall bottleneck and finally moving beyond the 70-year-old paradigm. This will enable entirely new computational capabilities, while also improving energy efficiency in everything from mobile devices to datacenters.”

CRISP is part of a $200 million, five-year national program that will fund centers led by six top research universities: UVA, University of California at Santa Barbara, Carnegie Mellon University, Purdue University, the University of Michigan and the University of Notre Dame. The Joint University Microelectronics Program is managed by North Carolina-based Semiconductor Research Corporation, a consortium that includes engineers and scientists from technology companies, universities and government agencies.

Each research center will examine a different challenge in advancing microelectronics, a field that is crucial to the U.S. economy and its national defense capabilities. The centers will collaborate to develop solutions that work together effectively. Each center will have liaisons from the program’s member companies, collaborating on the research and supporting technology transfer.

“The trifecta of academia, industry and government is a great model that benefits the country as a whole,” Skadron said. “Close collaboration with industry and government agencies can help identify interesting and relevant problems that university researchers can help solve, and this close collaboration also helps accelerate the impact of the research.”

The program includes positions for about a dozen new Ph.D. students at UVA Engineering, and altogether, about 100 Ph.D. students across the entire center. The center will also create numerous opportunities for undergraduate students to get involved in research. The program provides all these students with professional development opportunities and internships with companies that are program sponsors.

Engineering Dean Craig Benson said the new center expresses UVA Engineering’s commitment to research and education that add value to society.

“Most of the grand challenges the National Academy of Engineering has identified for humanity in the 21st century will require effective use of big data,” Benson said. “This investment affirms the national research community’s confidence that UVA has the vision and expertise to lead a new era for technology.”

Pamela Norris, UVA Engineering’s executive associate dean for research, said the center is also an example of the bold ideas that propelled the School to a near 36 percent increase in research funding in fiscal year 2017, compared to the prior year.

“UVA Engineering has a culture of collaborative, interdisciplinary research programs,” Norris said. “Our researchers are determined to use this experience to address some of society’s most complex challenges.”

UVA’s center will include researchers from seven other universities, working together in a holistic approach to solve the data bottleneck in current computer architecture.

“Solving these challenges and enabling the next generation of data-intensive applications requires computing to be embedded in and around the data, creating ‘intelligent’ memory and storage architectures that do as much of the computing as possible as close to the bits as possible,” Skadron said.

This starts at the chip level, where computer processing capabilities will be built inside the memory storage. Processors will also be paired with memory chips in 3-D stacks. UVA Electrical and Computer Engineering Professor Mircea Stan, an expert on the design of high-performance, low-power chips and circuits, will help lead the center’s research on 3-D chip architecture, thermal and power optimization, and circuit design.

CRISP researchers also will examine how other aspects of computer systems will have to change when computer architecture is reinvented, from operating systems to software applications to data centers that house entire computer system stacks. UVA Computer Science Assistant Professor Samira Khan, an expert in computer architecture and its implications for software systems, will help guide the center’s efforts to rethink how the many layers of hardware and software in current computer systems work together.

CRISP also will develop new system software and programming frameworks so computer users can accomplish their tasks without having to manage complex hardware details, and so that software is portable across diverse computer architectures. All this work will be developed in the context of several case studies to help guide the hardware and software research to practical solutions and real-world impact. These include searching for new cancer markers; mining the human gut microbiome for new insights on interactions among genetics, environment, lifestyle and wellness; and data mining for improving home health care.

“Achieving a vision like this requires a large team with diverse expertise across the entire spectrum of computer science and engineering, and such a large-scale initiative is very hard to put together without this kind of investment,” Skadron said. “These large, center-scale programs profoundly enhance the nation’s ability to maintain technological leadership, while simultaneously training a large cohort of students who will help address the nation’s rapidly growing need for technology leadership. This is an incredibly exciting opportunity for us.”


Source: University of Virginia

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Dell EMC to Supply U Michigan’s Great Lakes Cluster

October 16, 2018

The University of Michigan (U-M) today announced Dell EMC is the lead vendor for U-M’s $4.8 million Great Lakes HPC cluster scheduled for deployment in first half of 2019. The new machine is intended to replace the eig Read more…

By John Russell

What’s New in HPC Research: October (Part 2)

October 15, 2018

In this bimonthly feature, HPCwire will highlight newly published research in the high-performance computing community and related domains. From exascale to quantum computing, the details are here. Check back on the firs Read more…

By Oliver Peckham

Building a Diverse Workforce for Next-Generation Analytics and AI

October 15, 2018

High-performance computing (HPC) has a well-known diversity problem, and groups such as Women in HPC are working to address it. But while the diversity challenge crosses the science and technology spectrum, it is especia Read more…

By Jan Rowell

HPE Extreme Performance Solutions

One Small Step Toward Mars: One Giant Leap for Supercomputing

Since the days of the Space Race between the U.S. and the former Soviet Union, we have continually sought ways to perform experiments in space. Read more…

IBM Accelerated Insights

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas monster, which would be a first, but at a spec'd 250 single-pre Read more…

By Tiffany Trader

Dell EMC to Supply U Michigan’s Great Lakes Cluster

October 16, 2018

The University of Michigan (U-M) today announced Dell EMC is the lead vendor for U-M’s $4.8 million Great Lakes HPC cluster scheduled for deployment in first Read more…

By John Russell

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

Nvidia Platform Pushes GPUs into Machine Learning, High Performance Data Analytics

October 10, 2018

GPU leader Nvidia, generally associated with deep learning, autonomous vehicles and other higher-end enterprise and scientific workloads (and gaming, of course) Read more…

By Doug Black

Federal Investment in Exascale – What It Really Means

October 10, 2018

Earlier this month, the EuroHPC JU (Joint Undertaking) reached critical mass, and it seems all EU and affiliated member states, bar the UK (unsurprisingly), have or will sign on. The EuroHPC JU was born from a recognition that individual EU member states, and the EU as a whole, were significantly underinvesting in HPC compared to the US, China and Japan, who all have their own exascale investment and delivery strategies (NSCI, 13th 5 Year Plan, Post-K, etc). Read more…

By Dairsie Latimer

NERSC-9 Clues Found in NERSC 2017 Annual Report

October 8, 2018

If you’re eager to find out who’ll supply NERSC’s next-gen supercomputer, codenamed NERSC-9, here’s a project update to tide you over until the winning bid and system details are revealed. The upcoming system is referenced several times in the recently published 2017 NERSC annual report. Read more…

By Tiffany Trader

DDN, Nvidia Blueprint Unified AI Appliance with Up to 9 DGX-1s

October 4, 2018

Continuing the roll-out of the A3I (Accelerated, Any-Scale AI) storage strategy kicked off in June, DDN today announced a new set of solutions that combine the Read more…

By Tiffany Trader

D-Wave Is Latest to Offer Quantum Cloud Platform

October 4, 2018

D-Wave Systems today launched its cloud platform for quantum computing – Leap – which combines a development environment, community features, and "real-time Read more…

By John Russell

Rise of the Machines – Clarion Call on AI by U.S. House Subcommittee

October 2, 2018

Last week, the top U.S. House of Representatives subcommittee on IT weighed in on AI with a new report - Rise of the Machines: Artificial Intelligence and its Growing Impact on U.S. Policy. Read more…

By John Russell

TACC Wins Next NSF-funded Major Supercomputer

July 30, 2018

The Texas Advanced Computing Center (TACC) has won the next NSF-funded big supercomputer beating out rivals including the National Center for Supercomputing Ap Read more…

By John Russell

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

Requiem for a Phi: Knights Landing Discontinued

July 25, 2018

On Monday, Intel made public its end of life strategy for the Knights Landing "KNL" Phi product set. The announcement makes official what has already been wide Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

AMD’s EPYC Road to Redemption in Six Slides

June 21, 2018

A year ago AMD returned to the server market with its EPYC processor line. The earth didn’t tremble but folks took notice. People remember the Opteron fondly Read more…

By John Russell

Leading Solution Providers

HPC on Wall Street 2018 Booth Video Tours Playlist

Arista

Dell EMC

IBM

Intel

RStor

VMWare

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

GPUs Power Five of World’s Top Seven Supercomputers

June 25, 2018

The top 10 echelon of the newly minted Top500 list boasts three powerful new systems with one common engine: the Nvidia Volta V100 general-purpose graphics proc Read more…

By Tiffany Trader

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Aerodynamic Simulation Reveals Best Position in a Peloton of Cyclists

July 5, 2018

Eindhoven University of Technology (TU/e) and KU Leuven research group conducts the largest numerical simulation ever done in the sport industry and cycling discipline. The goal was to understand the aerodynamic interactions in the peloton, i.e., the main pack of cyclists in a race. Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This