Video: Pawsey Supercomputing Centre Provides Update on COVID-19 Research

August 5, 2020

Aug. 5, 2020 — Shared workflows, virus’ lineage, statistical inferences about potential treatment outcomes, COVID-19 targets molecular modelling are some of the collaborations taking place at the two national tier-1 supercomputing facilities to fight the pandemic.

In early April, Australia’s Tier 1 supercomputing facilities, Pawsey Supercomputing Centre (Pawsey) and National Computational Infrastructure (NCI), joined forces to offer additional computation and data resources to support the national and international research community to acquire, process, analyse, store and share data supporting COVID-19 research.

Both facilities contributed extensive resources to assist researchers in the fight to overcome COVID-19.  Through this initiative, researchers throughout Australia are now working with NCI which is currently supporting three targeted projects with more than 40 million units of compute time on the Gadi supercomputer; and Pawsey Supercomputer Centre, which provides access across five projects to over 1100 cores on the newly deployed Nimbus cloud and Topaz.

On July 31st, five researchers came together on Zoom to show over 70 attendees how they are using these facilities to understand the lineage of the SARS-COV-2 coronavirus while making statistical inferences about potential treatment outcomes, molecular modelling and more.

When asked how critical the supercomputing infrastructure is to their research, parallels were drawn between standard desktops and supercomputers. If this COVID-19 research was undertaken on a standard computer, it would take at least 26 years to achieve the work that will be completed by March 2021, using supercomputers. This is their work:

Dr Gareth Price, Head of Computational Biology at QCIF Facility for Advanced Bioinformatics showcased how Galaxy Australia has a dedicated COVID-19 pulsar, which is hosted and supported by the Pawsey Nimbus cloud service. The COVID-19 pulsar, which is accessible across the global Galaxy network, is a resource is to provide publicly accessible infrastructure and workflows for SARS-CoV-2 data analyses. Currently, they have three different types of analyses openly available – genomics, evolution and cheminformatics. These analyses and their best practices are available at https://covid19.galaxyproject.org/.

“Galaxy Australia, an open-sourced platform available for computational biological research across the world, has enabled the analysis of hundreds of SARS-CoV-2 genomes, amounting to over 9000 Galaxy mediated tool executions on Nimbus since late February,” said Dr Price during his presentation.

A/Prof Megan O’Mara at Australian National University showed viewers how her team uses large-scale molecular dynamics for rational drug design. Using the Gadi supercomputer at NCI, Megan’s team uses simulations of approximately 800,000 atoms that make up a key receptor of the human body to understand exactly how the coronavirus uses it to invade human cells. It is only with high-resolution modelling, achieved by supercomputers, can they accurately replicate the true behaviours of the receptors and figure out where vulnerabilities in the virus’ binding process are.

This means that in the future, this understanding of receptors will assist in the development of drug targeting to prevent viruses such as SARS-CoV-2 from entering the human systems.

Supercomputing has not only allowed the team to target interactions to develop a drug design against COVID-19, but it has allowed them to pursue a holistic understanding of the virus, to anticipate and protect us from potential threats in the future.

Dr Tom Karagiannis at Monash University together with Dr Andrew Hung from RMIT University also uses molecular modelling for COVID-19 targets. In the absence of a vaccine for the virus, Tom’s group repurposes existing research for potential antiviral effects. His team used GPU resources on Topaz to provide a molecular basis for known antivirals that could potentially stop the virus from replication inside our cells. and identify new ones which offer a protective effect.

Tom’s team has been using supercomputer to model the behaviour of a molecule called a-ketoamide. It was chosen because it is an antiviral with a broad spectrum developed by a German Lab for SARS-1. Based on his findings, the α-ketoamide compound class could be pursued as potential antivirals against COVID-19. You can read more in his recent publication here.

He is currently researching a possible target site on the SARS-CoV-2 main protease dimer interface.

With this information, Tom’s group is now focused on high-throughput screening of a library of small molecules to identify additional lead compounds with potential antiviral activity. The GPU resources on Topaz enabled the group to investigate more realistic binding of the small molecules to the main protease, allowing for selection of a final group of compounds for validation in the laboratory.

A/Prof Michael Wise at the University of Western Australia is a computational biologist who has a history of researching endemics, such as SARS, MERS and now SARS-CoV-2 (the COVID-19 coronavirus). His years of research works on the basis that these viruses all share a core proteome (the entire set of proteins that is, or can be, expressed by a genome, cell, tissue, or organism at a certain time). Michael’s team reconstructs the phylogenetic trees in which SARS and SARS-CoV-2 are placed. An understanding of this and its core-proteome means that drugs and antivirals can be targeted at their core as opposed to their strains; protecting us in the future from new viruses.

Prof Wise has recently preprint of the first results on the OSF platform.

Shelley Barfoot at the University of Queensland is part of a team of researchers led by Dr Alan Mark. Their team is understanding and modelling the key structural changes in the protein that allows a coronavirus to enter and infect a human cell. This project aims to throw light on a critical target for both vaccine development and the discovery of antiviral agents. In particular, working with researchers from one of three centres worldwide charged with rapid vaccine development by the World Health Organisation, the aim is to understand how potential vaccine constructs that incorporate the coronavirus fusion protein can be optimised.

This team uses Australia’s national supercomputing facilities to assist in the global effort to identify existing drugs that could be repurposed to treat COVID-19. The Automated Topology Builder (atb.uq.edu.au), a globally recognised molecular modelling tool developed at The University of Queensland, will be used to develop high-quality atomic interaction parameters for all pharmaceutically active compounds that have passed phase 2 clinical trials (efficacy and safety). Read more about the ATB and its impact here.

Missed out?

Did you miss this Pawsey Friday? It is now available on Pawsey’s YouTube channel to watch.

Want to be notified of upcoming events and training? Sign up to be a Pawsey Friend so you don’t miss out again.

For additional graphics, visit: https://pawsey.org.au/pawsey-friday-covid-recap/

About Pawsey

The Pawsey Supercomputing Centre is an unincorporated joint venture between CSIROCurtin UniversityEdith Cowan UniversityMurdoch University and The University of Western Australia.  It is supported by the Western Australian and Federal Governments. The Centre is one of two, Tier-1, High Performance Computing facilities in Australia, whose primary function is to accelerate scientific research for the benefit of the nation. Our service and expertise in supercomputingdatacloud services and visualisation, enables research across a spread of domains including astronomy, life sciences, medicine, energy, resources and artificial intelligence.


Source: Pawsey Supercomputing Centre

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia-Arm Deal a Boon for RISC-V?

October 26, 2020

The $40 billion blockbuster acquisition deal that will bring chip maker Arm into the Nvidia corporate family could provide a boost for the competing RISC-V architecture. As regulators in the U.S., China and the Europe Read more…

By George Leopold

OpenHPC Progress Report – v2.0, More Recipes, Cloud and Arm Support, Says Schulz

October 26, 2020

Launched in late 2015 and transitioned to a Linux Foundation Project in 2016, OpenHPC has marched quietly but steadily forward. Its goal “to provide a reference collection of open-source HPC software components and bes Read more…

By John Russell

NASA Uses Supercomputing to Measure Carbon in the World’s Trees

October 22, 2020

Trees constitute one of the world’s most important carbon sinks, pulling enormous amounts of carbon dioxide from the atmosphere and storing the carbon in their trunks and the surrounding soil. Measuring this carbon sto Read more…

By Oliver Peckham

Nvidia Dominates (Again) Latest MLPerf Inference Results

October 22, 2020

The two-year-old AI benchmarking group MLPerf.org released its second set of inferencing results yesterday and again, as in the most recent MLPerf training results (July 2020), it was almost entirely The Nvidia Show, a p Read more…

By John Russell

With Optane Gaining, Intel Exits NAND Flash

October 21, 2020

In a sign that its 3D XPoint memory technology is gaining traction, Intel Corp. is departing the NAND flash memory and storage market with the sale of its manufacturing base in China to SK Hynix of South Korea. The $9 Read more…

By George Leopold

AWS Solution Channel

Live Webinar: AWS & Intel Research Webinar Series – Fast scaling research workloads on the cloud

Date: 27 Oct – 5 Nov

Join us for the AWS and Intel Research Webinar series.

You will learn how we help researchers process complex workloads, quickly analyze massive data pipelines, store petabytes of data, and advance research using transformative technologies. Read more…

Intel® HPC + AI Pavilion

Berlin Institute of Health: Putting HPC to Work for the World

Researchers from the Center for Digital Health at the Berlin Institute of Health (BIH) are using science to understand the pathophysiology of COVID-19, which can help to inform the development of targeted treatments. Read more…

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing another major EuroHPC design win. Finnish supercomputing cent Read more…

By Oliver Peckham

OpenHPC Progress Report – v2.0, More Recipes, Cloud and Arm Support, Says Schulz

October 26, 2020

Launched in late 2015 and transitioned to a Linux Foundation Project in 2016, OpenHPC has marched quietly but steadily forward. Its goal “to provide a referen Read more…

By John Russell

Nvidia Dominates (Again) Latest MLPerf Inference Results

October 22, 2020

The two-year-old AI benchmarking group MLPerf.org released its second set of inferencing results yesterday and again, as in the most recent MLPerf training resu Read more…

By John Russell

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing a Read more…

By Oliver Peckham

HPE to Build Australia’s Most Powerful Supercomputer for Pawsey

October 20, 2020

The Pawsey Supercomputing Centre in Perth, Western Australia, has had a busy year. Pawsey typically spends much of its time looking to the stars, working with a Read more…

By Oliver Peckham

DDN-Tintri Showcases Technology Integration with Two New Products

October 20, 2020

DDN, a long-time leader in HPC storage, announced two new products today and provided more detail around its strategy for integrating DDN HPC technologies with Read more…

By John Russell

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

ROI: Is HPC Worth It? What Can We Actually Measure?

October 15, 2020

HPC enables innovation and discovery. We all seem to agree on that. Is there a good way to quantify how much that’s worth? Thanks to a sponsored white pape Read more…

By Addison Snell, Intersect360 Research

Supercomputer-Powered Research Uncovers Signs of ‘Bradykinin Storm’ That May Explain COVID-19 Symptoms

July 28, 2020

Doctors and medical researchers have struggled to pinpoint – let alone explain – the deluge of symptoms induced by COVID-19 infections in patients, and what Read more…

By Oliver Peckham

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

Intel’s 7nm Slip Raises Questions About Ponte Vecchio GPU, Aurora Supercomputer

July 30, 2020

During its second-quarter earnings call, Intel announced a one-year delay of its 7nm process technology, which it says it will create an approximate six-month shift for its CPU product timing relative to prior expectations. The primary issue is a defect mode in the 7nm process that resulted in yield degradation... Read more…

By Tiffany Trader

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for hi Read more…

By Tiffany Trader

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Aurora’s Troubles Move Frontier into Pole Exascale Position

October 1, 2020

Intel’s 7nm node delay has raised questions about the status of the Aurora supercomputer that was scheduled to be stood up at Argonne National Laboratory next year. Aurora was in the running to be the United States’ first exascale supercomputer although it was on a contemporaneous timeline with... Read more…

By Tiffany Trader

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Leading Solution Providers

Contributors

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at c Read more…

By Oliver Peckham

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

Microsoft Azure Adds A100 GPU Instances for ‘Supercomputer-Class AI’ in the Cloud

August 19, 2020

Microsoft Azure continues to infuse its cloud platform with HPC- and AI-directed technologies. Today the cloud services purveyor announced a new virtual machine Read more…

By Tiffany Trader

Oracle Cloud Infrastructure Powers Fugaku’s Storage, Scores IO500 Win

August 28, 2020

In June, RIKEN shook the supercomputing world with its Arm-based, Fujitsu-built juggernaut: Fugaku. The system, which weighs in at 415.5 Linpack petaflops, topp Read more…

By Oliver Peckham

DOD Orders Two AI-Focused Supercomputers from Liqid

August 24, 2020

The U.S. Department of Defense is making a big investment in data analytics and AI computing with the procurement of two HPC systems that will provide the High Read more…

By Tiffany Trader

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing a Read more…

By Oliver Peckham

Oracle Cloud Deepens HPC Embrace with Launch of A100 Instances, Plans for Arm, More 

September 22, 2020

Oracle Cloud Infrastructure (OCI) continued its steady ramp-up of HPC capabilities today with a flurry of announcements. Topping the list is general availabilit Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This