Video: Pawsey Supercomputing Centre Provides Update on COVID-19 Research

August 5, 2020

Aug. 5, 2020 — Shared workflows, virus’ lineage, statistical inferences about potential treatment outcomes, COVID-19 targets molecular modelling are some of the collaborations taking place at the two national tier-1 supercomputing facilities to fight the pandemic.

In early April, Australia’s Tier 1 supercomputing facilities, Pawsey Supercomputing Centre (Pawsey) and National Computational Infrastructure (NCI), joined forces to offer additional computation and data resources to support the national and international research community to acquire, process, analyse, store and share data supporting COVID-19 research.

Both facilities contributed extensive resources to assist researchers in the fight to overcome COVID-19.  Through this initiative, researchers throughout Australia are now working with NCI which is currently supporting three targeted projects with more than 40 million units of compute time on the Gadi supercomputer; and Pawsey Supercomputer Centre, which provides access across five projects to over 1100 cores on the newly deployed Nimbus cloud and Topaz.

On July 31st, five researchers came together on Zoom to show over 70 attendees how they are using these facilities to understand the lineage of the SARS-COV-2 coronavirus while making statistical inferences about potential treatment outcomes, molecular modelling and more.

When asked how critical the supercomputing infrastructure is to their research, parallels were drawn between standard desktops and supercomputers. If this COVID-19 research was undertaken on a standard computer, it would take at least 26 years to achieve the work that will be completed by March 2021, using supercomputers. This is their work:

Dr Gareth Price, Head of Computational Biology at QCIF Facility for Advanced Bioinformatics showcased how Galaxy Australia has a dedicated COVID-19 pulsar, which is hosted and supported by the Pawsey Nimbus cloud service. The COVID-19 pulsar, which is accessible across the global Galaxy network, is a resource is to provide publicly accessible infrastructure and workflows for SARS-CoV-2 data analyses. Currently, they have three different types of analyses openly available – genomics, evolution and cheminformatics. These analyses and their best practices are available at https://covid19.galaxyproject.org/.

“Galaxy Australia, an open-sourced platform available for computational biological research across the world, has enabled the analysis of hundreds of SARS-CoV-2 genomes, amounting to over 9000 Galaxy mediated tool executions on Nimbus since late February,” said Dr Price during his presentation.

A/Prof Megan O’Mara at Australian National University showed viewers how her team uses large-scale molecular dynamics for rational drug design. Using the Gadi supercomputer at NCI, Megan’s team uses simulations of approximately 800,000 atoms that make up a key receptor of the human body to understand exactly how the coronavirus uses it to invade human cells. It is only with high-resolution modelling, achieved by supercomputers, can they accurately replicate the true behaviours of the receptors and figure out where vulnerabilities in the virus’ binding process are.

This means that in the future, this understanding of receptors will assist in the development of drug targeting to prevent viruses such as SARS-CoV-2 from entering the human systems.

Supercomputing has not only allowed the team to target interactions to develop a drug design against COVID-19, but it has allowed them to pursue a holistic understanding of the virus, to anticipate and protect us from potential threats in the future.

Dr Tom Karagiannis at Monash University together with Dr Andrew Hung from RMIT University also uses molecular modelling for COVID-19 targets. In the absence of a vaccine for the virus, Tom’s group repurposes existing research for potential antiviral effects. His team used GPU resources on Topaz to provide a molecular basis for known antivirals that could potentially stop the virus from replication inside our cells. and identify new ones which offer a protective effect.

Tom’s team has been using supercomputer to model the behaviour of a molecule called a-ketoamide. It was chosen because it is an antiviral with a broad spectrum developed by a German Lab for SARS-1. Based on his findings, the α-ketoamide compound class could be pursued as potential antivirals against COVID-19. You can read more in his recent publication here.

He is currently researching a possible target site on the SARS-CoV-2 main protease dimer interface.

With this information, Tom’s group is now focused on high-throughput screening of a library of small molecules to identify additional lead compounds with potential antiviral activity. The GPU resources on Topaz enabled the group to investigate more realistic binding of the small molecules to the main protease, allowing for selection of a final group of compounds for validation in the laboratory.

A/Prof Michael Wise at the University of Western Australia is a computational biologist who has a history of researching endemics, such as SARS, MERS and now SARS-CoV-2 (the COVID-19 coronavirus). His years of research works on the basis that these viruses all share a core proteome (the entire set of proteins that is, or can be, expressed by a genome, cell, tissue, or organism at a certain time). Michael’s team reconstructs the phylogenetic trees in which SARS and SARS-CoV-2 are placed. An understanding of this and its core-proteome means that drugs and antivirals can be targeted at their core as opposed to their strains; protecting us in the future from new viruses.

Prof Wise has recently preprint of the first results on the OSF platform.

Shelley Barfoot at the University of Queensland is part of a team of researchers led by Dr Alan Mark. Their team is understanding and modelling the key structural changes in the protein that allows a coronavirus to enter and infect a human cell. This project aims to throw light on a critical target for both vaccine development and the discovery of antiviral agents. In particular, working with researchers from one of three centres worldwide charged with rapid vaccine development by the World Health Organisation, the aim is to understand how potential vaccine constructs that incorporate the coronavirus fusion protein can be optimised.

This team uses Australia’s national supercomputing facilities to assist in the global effort to identify existing drugs that could be repurposed to treat COVID-19. The Automated Topology Builder (atb.uq.edu.au), a globally recognised molecular modelling tool developed at The University of Queensland, will be used to develop high-quality atomic interaction parameters for all pharmaceutically active compounds that have passed phase 2 clinical trials (efficacy and safety). Read more about the ATB and its impact here.

Missed out?

Did you miss this Pawsey Friday? It is now available on Pawsey’s YouTube channel to watch.

Want to be notified of upcoming events and training? Sign up to be a Pawsey Friend so you don’t miss out again.

For additional graphics, visit: https://pawsey.org.au/pawsey-friday-covid-recap/

About Pawsey

The Pawsey Supercomputing Centre is an unincorporated joint venture between CSIROCurtin UniversityEdith Cowan UniversityMurdoch University and The University of Western Australia.  It is supported by the Western Australian and Federal Governments. The Centre is one of two, Tier-1, High Performance Computing facilities in Australia, whose primary function is to accelerate scientific research for the benefit of the nation. Our service and expertise in supercomputingdatacloud services and visualisation, enables research across a spread of domains including astronomy, life sciences, medicine, energy, resources and artificial intelligence.


Source: Pawsey Supercomputing Centre

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Quantum Internet: Tsinghua Researchers’ New Memory Framework could be Game-Changer

April 25, 2024

Researchers from the Center for Quantum Information (CQI), Tsinghua University, Beijing, have reported successful development and testing of a new programmable quantum memory framework. “This work provides a promising Read more…

Intel’s Silicon Brain System a Blueprint for Future AI Computing Architectures

April 24, 2024

Intel is releasing a whole arsenal of AI chips and systems hoping something will stick in the market. Its latest entry is a neuromorphic system called Hala Point. The system includes Intel's research chip called Loihi 2, Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Research senior analyst Steve Conway, who closely tracks HPC, AI, Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, and this day of contemplation is meant to provide all of us Read more…

Intel Announces Hala Point – World’s Largest Neuromorphic System for Sustainable AI

April 22, 2024

As we find ourselves on the brink of a technological revolution, the need for efficient and sustainable computing solutions has never been more critical.  A computer system that can mimic the way humans process and s Read more…

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Quantum Internet: Tsinghua Researchers’ New Memory Framework could be Game-Changer

April 25, 2024

Researchers from the Center for Quantum Information (CQI), Tsinghua University, Beijing, have reported successful development and testing of a new programmable Read more…

Intel’s Silicon Brain System a Blueprint for Future AI Computing Architectures

April 24, 2024

Intel is releasing a whole arsenal of AI chips and systems hoping something will stick in the market. Its latest entry is a neuromorphic system called Hala Poin Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Resear Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire