Virginia Tech Researchers Discover Key to Faster Processing for Exascale

June 15, 2017

BLACKSBURG, Va., June 15, 2017 — Exascale computing — the ability to perform calculations at 1 billion billion per second — is what researchers are striving to push processors to do in the next decade. That’s 1,000 times faster than the first petascale computer that came into existence in 2008.

Achieving efficiency will be paramount to building high-performance parallel computing systems if applications are to run in environments of enormous scale and also limited power.

A team of researchers in the Department of Computer Science in Virginia Tech’s College of Engineering discovered a key to what could keep supercomputing on the road to the ever-faster processing times needed to achieve exascale computing — and what policymakers say is necessary to keep the United States competitive in industries from everything to cybersecurity to ecommerce.

“Parallel computing is everywhere when you think about it,”said Bo Li, computer science Ph.D. candidate and first author on the paper being presented about the team’s research this month. “From making Hollywood movies to managing cybersecurity threats to contributing to milestones in life science research, making strides in processing times is a priority to get to the next generation of supercomputing.”

Li will present the team’s research on June 29 at the Association for Computing Machinery’s 26th International Symposium on High Performance Parallel and Distributed Computing in Washington, D.C. The research was funded by the National Science Foundation.

The team used a model called Compute-Overlap-Stall (COS) to better isolate contributions to the total time to completion for important parallel applications. By using the COS model they found that a nebulous measurement called overlap played a key role in understanding the performance of parallel systems. Previous models lumped overlap time into either compute time or memory stall time, but the Virginia Tech team found that when system and application variables changed, the effects of overlap time were unique and could dominate performance. This led to the realization that the dominance and complexity of overlap meant it had to be modeled independently on current and future systems or efficiency would remain elusive.

“What we learned is that overlap time is not an insignificant player in computer run times and the time it takes to perform tasks,” said Kirk Cameron, professor of computer science and lead on the project. “Researchers have spent three decades increasing overlap and we have shown that in order to improve the efficiency of future designs, we must consider their precise impact on overlap in isolation.”

The Virginia Tech researchers applied COS modeling to both Intel and IBM architectures and found that the error rate was as low as 7 percent on Intel systems and as high as 17 percent on IBM architecture. The team validated their models on 19 different applications as benchmarks. The application benchmarks used the following code: LULESH, AMGmk, Rodinia, and pF3D.

“This study is important to all kinds of industries who care about efficiency,” said Li. “Any entity that relies on supercomputing including cybersecurity organizations, large online retailers such as Amazon and video distribution services like Netflix, would be affected by the changes in processing time we found in measuring overlap.”

One of the challenges in the study was “throttling” three elements: central processing unit speed, memory speed, and concurrency, or running several threads at once. Throttling refers to a sequence that causes the computer to be idle for several cycles. This is the first paper to evaluate the simultaneous combined effects of all three methods.

Parallel computing in the exascale realm has the potential to open up so many new frontiers in myriad areas of scientific research, it is almost boundless. Understanding overlap and how to make computers run their most efficiently will be a significant key to achieving the computing power required to run massive amounts of calculations in the not-too-distant future.


Source: Virginia Tech

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia Debuts Turing Architecture, Focusing on Real-Time Ray Tracing

August 16, 2018

From the SIGGRAPH professional graphics conference in Vancouver this week, Nvidia CEO Jensen Huang unveiled Turing, the company's next-gen GPU platform that introduces new RT Cores to accelerate ray tracing and new Tenso Read more…

By Tiffany Trader

HPC Coding: The Power of L(o)osing Control

August 16, 2018

Exascale roadmaps, exascale projects and exascale lobbyists ask, on-again-off-again, for a fundamental rewrite of major code building blocks. Otherwise, so they claim, codes will not scale up. Naturally, some exascale pr Read more…

By Tobias Weinzierl

STAQ(ing) the Quantum Computing Deck

August 16, 2018

Quantum computers – at least for now – remain noisy. That’s another way of saying unreliable and in diverse ways that often depend on the specific quantum technology used. One idea is to mitigate noisiness and perh Read more…

By John Russell

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

Super Problem Solving

You might think that tackling the world’s toughest problems is a job only for superheroes, but at special places such as the Oak Ridge National Laboratory, supercomputers are the real heroes. Read more…

NREL ‘Eagle’ Supercomputer to Advance Energy Tech R&D

August 14, 2018

The U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) has contracted with Hewlett Packard Enterprise (HPE) for a new 8-petaflops (peak) supercomputer that will be used to advance early-stage R&a Read more…

By Tiffany Trader

STAQ(ing) the Quantum Computing Deck

August 16, 2018

Quantum computers – at least for now – remain noisy. That’s another way of saying unreliable and in diverse ways that often depend on the specific quantum Read more…

By John Russell

NREL ‘Eagle’ Supercomputer to Advance Energy Tech R&D

August 14, 2018

The U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) has contracted with Hewlett Packard Enterprise (HPE) for a new 8-petaflops (peak Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

SLATE Update: Making Math Libraries Exascale-ready

August 9, 2018

Practically-speaking, achieving exascale computing requires enabling HPC software to effectively use accelerators – mostly GPUs at present – and that remain Read more…

By John Russell

Summertime in Washington: Some Unexpected Advanced Computing News

August 8, 2018

Summertime in Washington DC is known for its heat and humidity. That is why most people get away to either the mountains or the seashore and things slow down. H Read more…

By Alex R. Larzelere

NSF Invests $15 Million in Quantum STAQ

August 7, 2018

Quantum computing development is in full ascent as global backers aim to transcend the limitations of classical computing by leveraging the magical-seeming prop Read more…

By Tiffany Trader

By the Numbers: Cray Would Like Exascale to Be the Icing on the Cake

August 1, 2018

On its earnings call held for investors yesterday, Cray gave an accounting for its latest quarterly financials, offered future guidance and provided an update o Read more…

By Tiffany Trader

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This