Virginia Tech Researchers Receive Grant for Physics-Guided Machine Learning to Predict Cell Mechanics

October 13, 2021

Oct. 13, 2021 — With advances in deep learning, machines are now able to “predict” a variety of aspects about life, including the way people interact on online platforms or the way they behave in physical environments. This is especially true in computer vision applications where there is a growing body of work on predicting the future behavior of moving objects such as vehicles and pedestrians.

“However, while machine-learning methods are now able to match — and sometimes even beat — human experts in mainstream vision applications, there are still some gaps in the ability of machine-learning methods to predict the motion of ‘shape-shifting’ objects that are constantly adapting their appearance in relation to their environment,” said Anuj Karpatne, assistant professor of computer science and faculty at the Sanghani Center for Artificial Intelligence and Data Analytics.

(From left) Anuj Karpatne, Department of Computer Science and Sanghani Center for Artificial Intelligence and Data Analytics; Amrinder Nain and Sohan Kale, both in the Department of Mechanical Engineering, meet in the STEP Lab. Photo by Peter Means for Virginia Tech.

This is a problem encountered in many scientific fields, Karpatne said. For example, in mechanobiology, cells change their shape and trajectory as they move across fibrous environments in the human body, constantly tugging or pushing on the fibers and modifying the background environment, which in-turn influences the movement of cells in a perpetual loop.

“This is fundamentally different from mainstream applications in computer vision where changes in the background caused by pedestrians and vehicles are far less accelerated than those possible by the movement of living cells governed by the laws of mechanics and biology,” he said.

To address this challenge, the National Science Foundation has awarded a team of Virginia Tech scientists a $1 million grant to create a new avenue of research in physics-guided machine learning. The project will, for the first time, systematically integrate the mechanics of cell motion available as biological rules and physics-based model outputs to predict the movement of shape-shifting objects in dynamic physical environments.

As principal investigator, Karpatne will team with co-principal investigators Amrinder Nain, associate professor, and Sohan Kale, assistant professor in the Department of Mechanical Engineering, combining his expertise in machine learning with their specialties in cell mechanobiology and computational modeling, respectively.

“The work we are doing at the STEP Lab is a natural overlap,” said Nain, who founded the lab and pioneered research in designing nanofiber network platforms and experimental imaging to study cell motion.

“Cell shapes are highly dynamic and undergo limitless transformations as they sense and react to their environment. In addition, cell motion is constrained by the forces exerted by the cells on the background environment and the complex nature of cell-cell and cell-fiber interactions,” Nain said. “While conventional methods for studying cell motion require manual tracking of images’ features or running computationally expensive tools, our project will take advantage of our ability to create well-defined suspended nanofiber nanonets and advancements in machine learning to open to a new frontier to automatically describe new rules of cell behavior.”

Kale said his Mechanics of Living Materials Lab has already developed a computational method to estimate the forces exerted by cells from the deformed shapes of underlying fibers.

“This, combined with the deep learning framework from Anuj’s group, provides a framework to measure forces directly from experimental images of cells moving on nanofiber networks. Our tool enables the study of cell mechanobiology in fibrous environments in a radically different way than existing approaches in the field,” said Kale.

“We are fully leveraging the principles of `convergence research’ in our project by integrating data, knowledge, and methodologies from our three different disciplines — machine learning, experimental cell imaging, and computational modeling,” said Karpatne. “The ultimate goal is to accurately predict and explain how cells move, interact with each other, and change their appearance in physiological environments inside our body.”

The project will contribute foundational innovations by going far and beyond current standards of black-box machine learning for motion prediction in scientific problems. “By anchoring our deep learning patterns with scientific theories, our work advances the frontiers of explainable machine learning by discovering new rules of cell behavior that are physically consistent and scientifically meaningful,” Karpatne said.

The research has potential impact on several scientific disciplines that routinely involve predicting the trajectories of shape-shifting objects in dynamic physical environments, for example, hurricane prediction, bird migration, and ocean eddy monitoring, he said.

The project will also lead to novel advances in mechanobiology.

“Studying cell migration is a major research frontier in the study of embryo development, wound closure, immune response, and cancer metastasis,” Nain said. “We expect that this research will also serve as a drug discovery, diagnostics, and testing platform in the context of cancer and wound healing biology where the spread of disease or repair of wound result from the constant change of cell and fibrous network shapes.”

The research team is committed to supporting Virginia Tech’s education and workforce development goals, especially toward training a diverse cadre of students who can address complex problems requiring interdisciplinary skills. These students include those majoring in computer science, mechanical engineering, physics, and biological sciences.

Three Ph.D. students will also be working on this project. They are Arka Daw in computer science, advised by Karpatne; Abinash Padhi in mechanical engineering, advised by Nain; and Maahi Tulukder in mechanical engineering, advised by Kale.

In conjunction with their research, Karpatne, Nain, and Kale will collaborate with the Center for Educational Networks and Impacts to create a hands-on exhibition on “Artificial Intelligence for Observing Cells” for the annual Virginia Tech Science Festival and Hokie for a Day field trip event.


Source: Barbara L. Micale, Virginia Tech

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Royalty-free stock illustration ID: 1938746143

MosaicML, Led by Naveen Rao, Comes Out of Stealth Aiming to Ease Model Training

October 15, 2021

With more and more enterprises turning to AI for a myriad of tasks, companies quickly find out that training AI models is expensive, difficult and time-consuming. Finding a new approach to deal with those cascading challenges is the aim of a new startup, MosaicML, that just came out of stealth... Read more…

NSF Awards $11M to SDSC, MIT and Univ. of Oregon to Secure the Internet

October 14, 2021

From a security standpoint, the internet is a problem. The infrastructure developed decades ago has cracked, leaked and been patched up innumerable times, leaving vulnerabilities that are difficult to address due to cost Read more…

SC21 Announces Science and Beyond Plenary: the Intersection of Ethics and HPC

October 13, 2021

The Intersection of Ethics and HPC will be the guiding topic of SC21's Science & Beyond plenary, inspired by the event tagline of the same name. The evening event will be moderated by Daniel Reed with panelists Crist Read more…

Quantum Workforce – NSTC Report Highlights Need for International Talent

October 13, 2021

Attracting and training the needed quantum workforce to fuel the ongoing quantum information sciences (QIS) revolution is a hot topic these days. Last week, the U.S. National Science and Technology Council issued a report – The Role of International Talent in Quantum Information Science... Read more…

AWS Solution Channel

Cost optimizing Ansys LS-Dyna on AWS

Organizations migrate their high performance computing (HPC) workloads from on-premises infrastructure to Amazon Web Services (AWS) for advantages such as high availability, elastic capacity, latest processors, storage, and networking technologies; Read more…

Eni Returns to HPE for ‘HPC4’ Refresh via GreenLake

October 13, 2021

Italian energy company Eni is upgrading its HPC4 system with new gear from HPE that will be installed in Eni’s Green Data Center in Ferrera Erbognone (a province in Pavia, Italy), and delivered “as-a-service” via H Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Royalty-free stock illustration ID: 1938746143

MosaicML, Led by Naveen Rao, Comes Out of Stealth Aiming to Ease Model Training

October 15, 2021

With more and more enterprises turning to AI for a myriad of tasks, companies quickly find out that training AI models is expensive, difficult and time-consuming. Finding a new approach to deal with those cascading challenges is the aim of a new startup, MosaicML, that just came out of stealth... Read more…

Quantum Workforce – NSTC Report Highlights Need for International Talent

October 13, 2021

Attracting and training the needed quantum workforce to fuel the ongoing quantum information sciences (QIS) revolution is a hot topic these days. Last week, the U.S. National Science and Technology Council issued a report – The Role of International Talent in Quantum Information Science... Read more…

Eni Returns to HPE for ‘HPC4’ Refresh via GreenLake

October 13, 2021

Italian energy company Eni is upgrading its HPC4 system with new gear from HPE that will be installed in Eni’s Green Data Center in Ferrera Erbognone (a provi Read more…

The Blueprint for the National Strategic Computing Reserve

October 12, 2021

Over the last year, the HPC community has been buzzing with the possibility of a National Strategic Computing Reserve (NSCR). An in-utero brainchild of the COVID-19 High-Performance Computing Consortium, an NSCR would serve as a Merchant Marine for urgent computing... Read more…

UCLA Researchers Report Largest Chiplet Design and Early Prototyping

October 12, 2021

What’s the best path forward for large-scale chip/system integration? Good question. Cerebras has set a high bar with its wafer scale engine 2 (WSE-2); it has 2.6 trillion transistors, including 850,000 cores, and was fabricated using TSMC’s 7nm process on a roughly 8” x 8” silicon footprint. Read more…

What’s Next for EuroHPC: an Interview with EuroHPC Exec. Dir. Anders Dam Jensen

October 7, 2021

One year after taking the post as executive director of the EuroHPC JU, Anders Dam Jensen reviews the project's accomplishments and details what's ahead as EuroHPC's operating period has now been extended out to the year 2027. Read more…

University of Bath Unveils Janus, an Azure-Based Cloud HPC Environment

October 6, 2021

The University of Bath is upgrading its HPC infrastructure, which it says “supports a growing and wide range of research activities across the University.” Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer... Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months... Read more…

US Closes in on Exascale: Frontier Installation Is Underway

September 29, 2021

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, held by Zoom this week (Sept. 29-30), it was revealed that the Frontier supercomputer is currently being installed at Oak Ridge National Laboratory in Oak Ridge, Tenn. The staff at the Oak Ridge Leadership... Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

Leading Solution Providers

Contributors

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-ap Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make i Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire