Visual Genomes Foundation Starts Visual DNA Project

August 10, 2018

Aug. 10, 2018 — Visual artificial intelligence will take a huge step forward as the Visual Genomes Foundation (VGF) learns and records exabytes of visual DNA features from millions of images. The VGF is open to industry, academia, and government partners.

The key technologies of the VGF are Volume Learning and Visual DNA, described in the brand new book “Synthetic Vision using Volume Learning and Visual DNA” from De Gruyter Press.

Volume Learning and Visual DNA enable a new class of AI applications called LCI (Learning, Cataloging, and Inspection), ideal to open up new Visual AI basic infrastructure market segments. LCI can be used to find known objects, and clearly identify unknown objects.

“Nothing like this has ever been attempted in the history of neuroscience or computer vision”, says Scott Krig, founder of Krig Research and director of the Visual Genomes Foundation. “Nobody has ever created a working model of the entire human visual system – a true synthetic vision system. We have a first generation model working now that will only get better over time. Imagine a new crop of thousands of researchers improving the model, it will advance in huge steps within a few years, just like what happened with the rapid advances in DNNs when thousands of researchers took interest”.

VGF is actively looking for VGF sponsors and partners now, to widen participation. VGF sponsors and partners will have a birds-eye seat to direct the VGF work, and reap the rewards. VGF enables collaboration, commercial spinoffs, and public research.

VGF promotes a new ecosystem of Visual AI applications using a supercomputer cloud infrastructure backbone, connected to embedded devices, drone vehicles, fixed infrastructure cameras, and smart phones.

Krig notes, “The current generation of deep learning, such as DNNs and RNNs, are doing very well, providing super-human capabilities. Volume learning and Visual DNA will not displace deep learning, but rather come along side to solve Visual AI problems not suitable for RNNs and DNNs. DNNs are inference learners – they look for trained, known objects and infer a % match score, but volume learning and VDNA enable additional Visual AI applications.”

DNNs typically learn only one type of feature: gradient feature weights, built up during a tedious forward/backward process which averages together all similar gradients from the training data, losing fine details in the process. DNN gradient feature weights contain no spatial relationships, and are classified as a group to infer image similarity %. DNN inference can be spoofed by prepared, malicious images. Also, DNNs find difficulties processing large images such as 4k or 8k Digital, due to the prohibitive compute workload. DNNs prefer smaller training images to reduce the compute workload, and often downscale all training images to a uniform size of perhaps 600×400 or 300×300 pixels, which is fine for many applications.

However, the VGF synthetic vision system uses Volume Learning to collect massive amounts of visual DNA describing shape, color, texture and icon-like glyph features from any size of image. VDNA describe all pieces of the image.

DNNs collect only one type of feature: gradient edges. But Volume Learning collects 16,000 different types of features as VDNA. Volume Learning decomposes each image scene into thousands of Visual DNA puzzle pieces, organized into strands of visual DNA describing higher-level visual objects. VDNA is sequenced from the images, cataloged in an associative memory, and available to groups of visual learning agents to create LCI applications (Learning, Cataloging, and Inspection).

Volume Learning and Visual DNA cannot solve all visual AI problems, but rather can enable new applications for LCI markets.

VDNA enables a new form of Visual AI – exploratory learning to find both unknown and known objects in unlabeled data. Deep learning is very effective when trained with a large training set of known labeled images. But, VDNA is ideal for finding unknown objects, as well as known objects, and cataloging everything. Labels can be assigned later.

VDNA enables an exploratory learning model, like a visual assistant who can locate both known and unknown objects in a scene, providing positive ID of known objects, visual alerts, visual inventory, and inspection. VDNA also enable time-sequence inspection to find changes in an object, for example weekly medical diagnostics to look for changes in an MRI, CAT or XRAY image. Other examples include scene learning, GIS learning, and general inspection apps.

Synthetic vision models the entire human visual pathway in the brain using a multidimensional volumetric model, inspired by research from the best neuroscience, deep learning, and computer vision. It’s the first model of its kind.

Krig is excited about the potential for the VGF. “The first phase is a cloud-based supercomputer system to do the heavy lifting, that talks to edge devices, like drones and smart phones. The phase 1 goal is to sequence and analyze one million images into their constituent visual DNA features, and create selected LCI apps for commercial use.“

The sky is the limit for new applications, since visual DNA and visual genes open new possibilities beyond current state of the art methods.

Synthetic vision addresses problems deep neural networks (DNNs) do not reach. For example, DNNs usually reduce all images to a uniform size such as 300×300 pixels, losing vast amounts of pixel detail in order to compress the feature set and make the model computable, which is a desirable goal of DNNs. However, volume learning operates on full resolution images, such as 12MP images with 4000 x 3000 pixels from common digital cameras, up to large satellite mosaics of the earth. All pixel details is preserved in the visual feature memory. Also, DNNs are prone to spoofing and false positives, presenting a security and reliability risk. Synthetic vision mitigates spoofing, and may be deployed securely with DNNs.

“The initial VGF research will push the boundaries of computing, demanding petaflops of computer power to challenge the fastest super computers, as well as exabytes of storage”, says Krig.

The visual genomes foundation is inspired by the successful Human Genome Project funded by the USG, which opened the frontiers of human DNA science and genomics, enabling new medical innovations.

Interested sponsors and partners are encouraged to apply to join the VGF.


Source: Visual Genomes Foundation

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized silicon designs catered toward general-purpose cloud computing Read more…

By Tiffany Trader

The Internet of Criminal Things—Trust in the Gods but Verify!

February 20, 2019

“Are we under attack?” asked Professor Elmarie Biermann of the Cyber Security Institute during the recent South African Centre for High Performance Computing’s (CHPC) National Conference in Cape Town. A quick show Read more…

By Elizabeth Leake, STEM-Trek

Machine Learning Takes Heat for Science’s Reproducibility Crisis

February 19, 2019

Scientists are raising red flags about the accuracy and reproducibility of conclusions drawn by machine learning frameworks. Among the remedies are developing new ML systems that can question their own predictions, show Read more…

By George Leopold

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

The Perils of Becoming Trapped in the Cloud

Terms like ‘open systems’ have been bandied about for decades. While modern computer systems are relatively open compared to their predecessors, there are still plenty of opportunities to become locked into proprietary interfaces. Read more…

What’s New in HPC Research: Wind Farms, Gravitational Lenses, Web Portals & More

February 19, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Insights from Optimized Codes on Cineca’s Marconi

February 15, 2019

What can you do with 381,392 CPU cores? For Cineca, it means enabling computational scientists to expand a large part of the world’s body of knowledge from th Read more…

By Ken Strandberg

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

UC Berkeley Paper Heralds Rise of Serverless Computing in the Cloud – Do You Agree?

February 13, 2019

Almost exactly ten years to the day from publishing of their widely-read, seminal paper on cloud computing, UC Berkeley researchers have issued another ambitious examination of cloud computing - Cloud Programming Simplified: A Berkeley View on Serverless Computing. The new work heralds the rise of ‘serverless computing’ as the next dominant phase of cloud computing. Read more…

By John Russell

Iowa ‘Grows Its Own’ to Fill the HPC Workforce Pipeline

February 13, 2019

The global workforce that supports advanced computing, scientific software and high-speed research networks is relatively small when you stop to consider the magnitude of the transformative discoveries it empowers. Technical conferences provide a forum where specialists convene to learn about the latest innovations and schedule face-time with colleagues from other institutions. Read more…

By Elizabeth Leake, STEM-Trek

Trump Signs Executive Order Launching U.S. AI Initiative

February 11, 2019

U.S. President Donald Trump issued an Executive Order (EO) today launching a U.S Artificial Intelligence Initiative. The new initiative - Maintaining American L Read more…

By John Russell

Celebrating Women in Science: Meet Four Women Leading the Way in HPC

February 11, 2019

One only needs to look around at virtually any CS/tech conference to realize that women are underrepresented, and that holds true of HPC. SC hosts over 13,000 H Read more…

By AJ Lauer

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This