XSEDE ECSS, Blacklight and Stampede Support California Yellowtail Genome Assembly

April 12, 2018

April 12, 2018 — If you eat fish in the U.S., chances are it once swam in another country. That’s because the U.S. imports over 80 percent of its seafood, according to estimates by the United Nations. New genetic research could help make farmed fish more palatable and bring America’s wild fish species to dinner tables. Scientists have used big data and supercomputers to catch a fish genome, a first step in its sustainable aquaculture harvest.

Researchers assembled and annotated for the first time the genome – the total genetic material – of the fish species Seriola dorsalis. Also known as California Yellowtail, it’s a fish of high value to the sashimi, or raw seafood industry. The science team formed from the Southwest Fisheries Science Center of the U.S. National Marine Fisheries Service, Iowa State University, and the Instituto Politécnico Nacional in Mexico. They published their results on January of 2018 in the journal BMC Genomics.

“The major findings in this publication were to characterize the Seriola dorsalis genome and its annotation, along with getting a better understanding of sex determination of this fish species,” said study co-author Andrew Severin, a Scientist and Facility Manager at the Genome Informatics Facility of Iowa State University.

“We can now confidently say,” added Severin, “that Seriola dorsalis has a Z-W sex determination system, and that we know the chromosome that it’s contained on and the region that actually determines the sex of this fish.” Z-W refers to the sex chromosomes and depends on whether the male or female is heterozygous (XX,XY or ZZ,ZW), respectively. Another way to think about this is that in Z-W sex determination, the DNA molecules of the fish ovum determine the sex of the offspring. By contrast, in the X-Y sex determination system, such is found in humans, the sperm determines sex in the offspring.

It’s hard to tell the difference between a male and female yellowtail fish because they don’t have any obvious phenotypical, or outwardly physically distinguishing traits. “Being able to determine sex in fish is really important because we can develop a marker that can be used to determine sex in young fish that you can’t determine phenotypically,” Severin explained. “This can be used to improve aquaculture practices.” Sex identification lets fish farmers stock tanks with the right ratio of males to females and get better yield.

Assembling and annotating a genome is like building an enormous three-dimensional jigsaw puzzle. The Seriola dorsalis genome has 685 million pieces – its base pairs of DNA – to put together. “Gene annotations are locations on the genome that encode transcripts that are translated into proteins,” explained Severin. “Proteins are the molecular machinery that operate all the biochemistry in the body from the digestion of your food, to the activation of your immune system to the growth of your fingernails. Even that is an oversimplification of all the regulation.”

Severin and his team assembled the genome of 685 megabase (MB) pairs from thousands of smaller fragments that each gave information to form the complete picture. “We had to sequence them for quite a bit of depth in order to construct the full 685 MB genome,” said study co-author Arun Seetharam. “This amounted to a lot of data,” added Seetharam, who is an associate scientist at the Genome Informatics Facility of Iowa State University.

The raw DNA sequence data ran 500 gigabytes for the Seriola dorsalis genome, coming from tissue samples of a juvenile fish collected at the Hubbs SeaWorld Research Institute in San Diego. “In order to put them together,” Seetharam said, “we needed a computer with a lot more RAM to put it all into the computer’s memory and then put it together to construct the 685 MB genome. We needed really powerful machines.”

That’s when Seetharam realized that the computational resources at Iowa State University at the time weren’t sufficient get the job done in a timely manner, and he turned to XSEDE, the eXtreme Science and Engineering Discovery Environment funded by the National Science Foundation. XSEDE is a single virtual system that scientists can use to interactively share computing resources, data and expertise.

“When we first started using XSEDE resources,” explained Seetharam, “there was an option for us to select for ECSS, the Extended Collaborative Support Services. We thought it would be a great help if there were someone from the XSEDE side to help us. We opted for ECSS. Our interactions with Phillip Blood of the Pittsburgh Supercomputing Center were extremely important to get us up and running with the assembly quickly on XSEDE resources,” Seetharam said.

The genome assembly work was computed at the Pittsburgh Supercomputing Center (PSC) on the Blacklightsystem, which at one point was the world’s largest coherent shared-memory computing system. Blacklight has since been superseded by the data-centric Bridges system at PSC, which includes similar large-memory nodes of up to 12 terabytes — a thousand times more than a typical personal computer. “We ended up using Blacklight at the time because it had a lot of RAM,” recalled Andrew Severin. That’s because they needed to put all the raw data into the computer’s random access memory (RAM) so that it could use the algorithms of the Maryland Super-Read Celera Assembler genome assembly software. “You have to be able to compare every single piece of sequence data to every other piece to figure out which pieces need to be joined together, like a giant puzzle,” Severin explained.

“We also used Stampede,” continued Severin, “the first Stampede, which is another XSEDE computational resource that has lots and lots of compute nodes. Each compute node you can think of as a separate computer. ” The Stampede1 system at the Texas Advanced Computing Center had over 6,400 Dell PowerEdge server nodes, which later added 508 Intel Knights Landing (KNL) nodes in preparation for its current successor, Stampede2 with 4,200 KNL nodes.

“We used Stampede to do the annotation of these gene models that we identified in the genome to try and figure out what their functions are,” Severin said. “That required us to perform an analysis called the Basic Local Alignment Search Tool (BLAST), and it required us to use many CPUs, over a year’s worth of compute time that we ended up doing within a couple of week’s worth of actual time because of the many nodes that were on Stampede.”

To read the full article, click here.


Source: TACC

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Russian and American Scientists Achieve 50% Increase in Data Transmission Speed

September 20, 2018

As high-performance computing becomes increasingly data-intensive and the demand for shorter turnaround times grows, data transfer speed becomes an ever more important bottleneck. Now, in an article published in IEEE Tra Read more…

By Oliver Peckham

IBM to Brand Rescale’s HPC-in-Cloud Platform

September 20, 2018

HPC (or big compute)-in-the-cloud platform provider Rescale has formalized the work it’s been doing in partnership with public cloud vendors by announcing its Powered by Rescale program – with IBM as its first named Read more…

By Doug Black

Democratization of HPC Part 1: Simulation Sheds Light on Building Dispute

September 20, 2018

This is the first of three articles demonstrating the growing acceptance of High Performance Computing especially in new user communities and application areas. Major reasons for this trend are the ongoing improvements i Read more…

By Wolfgang Gentzsch

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

Clouds Over the Ocean – a Healthcare Perspective

Advances in precision medicine, genomics, and imaging; the widespread adoption of electronic health records; and the proliferation of medical Internet of Things (IoT) and mobile devices are resulting in an explosion of structured and unstructured healthcare-related data. Read more…

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Gordon Bell Prize used Summit in their work. That’s impres Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Nvidia Accelerates AI Inference in the Datacenter with T4 GPU

September 14, 2018

Nvidia is upping its game for AI inference in the datacenter with a new platform consisting of an inference accelerator chip--the new Turing-based Tesla T4 GPU- Read more…

By George Leopold

DeepSense Combines HPC and AI to Bolster Canada’s Ocean Economy

September 13, 2018

We often hear scientists say that we know less than 10 percent of the life of the oceans. This week, IBM and a group of Canadian industry and government partner Read more…

By Tiffany Trader

Rigetti (and Others) Pursuit of Quantum Advantage

September 11, 2018

Remember ‘quantum supremacy’, the much-touted but little-loved idea that the age of quantum computing would be signaled when quantum computers could tackle Read more…

By John Russell

How FPGAs Accelerate Financial Services Workloads

September 11, 2018

While FSI companies are unlikely, for competitive reasons, to disclose their FPGA strategies, James Reinders offers insights into the case for FPGAs as accelerators for FSI by discussing performance, power, size, latency, jitter and inline processing. Read more…

By James Reinders

Update from Gregory Kurtzer on Singularity’s Push into FS and the Enterprise

September 11, 2018

Container technology is hardly new but it has undergone rapid evolution in the HPC space in recent years to accommodate traditional science workloads and HPC systems requirements. While Docker containers continue to dominate in the enterprise, other variants are becoming important and one alternative with distinctly HPC roots – Singularity – is making an enterprise push targeting advanced scale workload inclusive of HPC. Read more…

By John Russell

At HPC on Wall Street: AI-as-a-Service Accelerates AI Journeys

September 10, 2018

AIaaS – artificial intelligence-as-a-service – is the technology discipline that eases enterprise entry into the mysteries of the AI journey while lowering Read more…

By Doug Black

TACC Wins Next NSF-funded Major Supercomputer

July 30, 2018

The Texas Advanced Computing Center (TACC) has won the next NSF-funded big supercomputer beating out rivals including the National Center for Supercomputing Ap Read more…

By John Russell

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

Requiem for a Phi: Knights Landing Discontinued

July 25, 2018

On Monday, Intel made public its end of life strategy for the Knights Landing "KNL" Phi product set. The announcement makes official what has already been wide Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

AMD’s EPYC Road to Redemption in Six Slides

June 21, 2018

A year ago AMD returned to the server market with its EPYC processor line. The earth didn’t tremble but folks took notice. People remember the Opteron fondly Read more…

By John Russell

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

Sandia to Take Delivery of World’s Largest Arm System

June 18, 2018

While the enterprise remains circumspect on prospects for Arm servers in the datacenter, the leadership HPC community is taking a bolder, brighter view of the x86 server CPU alternative. Amongst current and planned Arm HPC installations – i.e., the innovative Mont-Blanc project, led by Bull/Atos, the 'Isambard’ Cray XC50 going into the University of Bristol, and commitments from both Japan and France among others -- HPE is announcing that it will be supply the United States National Nuclear Security Administration (NNSA) with a 2.3 petaflops peak Arm-based system, named Astra. Read more…

By Tiffany Trader

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

Intel Pledges First Commercial Nervana Product ‘Spring Crest’ in 2019

May 24, 2018

At its AI developer conference in San Francisco yesterday, Intel embraced a holistic approach to AI and showed off a broad AI portfolio that includes Xeon processors, Movidius technologies, FPGAs and Intel’s Nervana Neural Network Processors (NNPs), based on the technology it acquired in 2016. Read more…

By Tiffany Trader

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

GPUs Power Five of World’s Top Seven Supercomputers

June 25, 2018

The top 10 echelon of the newly minted Top500 list boasts three powerful new systems with one common engine: the Nvidia Volta V100 general-purpose graphics proc Read more…

By Tiffany Trader

The Machine Learning Hype Cycle and HPC

June 14, 2018

Like many other HPC professionals I’m following the hype cycle around machine learning/deep learning with interest. I subscribe to the view that we’re probably approaching the ‘peak of inflated expectation’ but not quite yet starting the descent into the ‘trough of disillusionment. This still raises the probability that... Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This