XSEDE Maverick Simulations Enable a First in Biomolecular Design

May 17, 2018

May 17, 2018 — What makes kevlar stop a bullet, at the atomic level?

The properties of materials emerge from their molecular or atomic structure, yet many details between the micro and the macro remain a mystery to science. Scientists are actively researching the rational design of targeted supramolecular architectures, with the goal of engineering their structural dynamics and their response to environmental cues.

Chemists at the University of California, San Diego (UCSD) designed a sheet of proteins (C98RhuA) that toggle between different states of porosity and density. The cells of the crystal lattice are hinged at the corners of the C98RhuA tetramer, allowing it to turn and open or close the pore. (Credit: Robert Alberstein et al.)

A team of chemists at the University of California, San Diego (UCSD) has now designed a two-dimensional protein crystal that toggles between states of varying porosity and density. This is a first in biomolecular design that combined experimental studies with computation done on supercomputers. The research, published in April 2018 in Nature Chemistry, could help create new materials for renewable energy, medicine, water purification, and more.

“We did an extensive set of molecular dynamics simulations and experiments, which explained the basis of the unusual structural dynamics of these artificial proteins, based on which we were able to make rational decisions and alter the structural dynamics of the assembly,” said study co-author Akif Tezcan, a professor of chemistry and biochemistry at UCSD.

Tezcan’s team worked with the protein L-rhamnulose-1-phosphate aldolase (RhuA), which was modified with cysteine amino acids in its four corners at position 98 (C98RhuA). He and his group had previously publishedwork on the self-assembly of this artificial, two-dimensional protein architecture, which he said showed an interesting behavior called auxeticity.

“These crystalline assemblies can actually open and close in coherence,” Tezcan said. “As they do, they shrink or expand equally in X and Y directions, which is the opposite of what normal materials do. We wanted to investigate what these motions are due to and what governs them.” An example of auxeticity can be seen in the Hoberman Sphere, a toy ball that expands through its scissor-like hinges when you pull the ends apart.

“Our goal was to be able to do the same thing, using proteins as building blocks, to create new types of materials with advanced properties,” Tezcan said. “The example that we’re studying here was essentially the fruit of those efforts, where we used this particular protein that has a square-like shape, which we attached to one another through chemical linkages that were reversible and acted like hinges. This allowed these materials to form very well-ordered crystals that were also dynamic due to the flexibility of these chemical bonds, which ended up giving us these new, emergent properties.”

Control of the opening and closing of the pores in the C98RhuA protein 2-D lattices could capture or release specific molecular targets useful for drug delivery or creation of better batteries with more research, Tezcan said. Or they could selectively pass through or block the passage of biological molecules and filter water.

“Our idea was to be able to build complex materials, like evolution has done, using proteins as building blocks,” Tezcan said.

The way Tezcan’s team did so was to first express the proteins in E. coli bacteria cells and purify them, after which they induced the formation of the chemical linkages that actually create the crystals of C98RhuA, which vary as a function of their oxidation state, through the addition of redox-active chemicals.

“Once the crystals are formed, the big characterization becomes the openness or closeness of the crystals themselves,” explained Tezcan, which was determined through statistical analysis of hundreds of images captured using electron microscopy.

The experiments worked hand-in-hand with computation, primarily all-atom simulations using the NAMD software developed at the University of Illinois at Urbana Champaign by the group of the late biophysicist Klaus Schulten.

Tezcan’s team used a reduced system of just four proteins linked together, which can be tiled infinitely to get to the bottom of how the crystal opens and closes. “The reduced system allowed us to make these calculations feasible for us, because there are still hundreds of thousands of atoms, even in this reduced system,” Tezcan said. His team took advantage of features specific to C98RhuA, such as using a single reaction coordinate corresponding to its openness. “We were really able to validate this model as being representative of what we observed in the experiment,” Tezcan said.

The all-atom molecular simulations of the C98RhuA crystal lattices were used to map the free-energy landscape. This energy landscape looks like a natural landscape, with valleys, mountains, and mountain passes, explained study co-author Francesco Paesani, a professor of chemistry and biochemistry at UCSD.

“The valleys become the most stable configurations of your protein assemblies,” Paesani said, which the molecular system prefers over having to spend energy to go over a mountain. And the mountain passes show the way from one stable structure to another.

“Typically, free energy calculations are very expensive and challenging because essentially what you’re trying to do is sample all possible configurations of a molecular system that contains thousands of atoms. And you want to know how many positions these atoms can acquire during a simulation. It takes a lot of time and a lot of computer resources,” Paesani said.

To meet these and other computational challenges, Paesani has been awarded supercomputer allocations through XSEDE, the Extreme Science and Engineering Discovery Environment, funded by the National Science Foundation.

“Fortunately, XSEDE has provided us with an allocation on Maverick, the GPU computing clusters at the Texas Advanced Computing Center (TACC),” Paesani said. Maverick is a dedicated visualization and data analysis resource architected with 132 NVIDIA Tesla K40 “Atlas” graphics processing units (GPU) for remote visualization and GPU computing to the national community.

“That was very useful to us, because the NAMD software that we use runs very well on GPUs. That allows us to speed up the calculations by orders of magnitudes,” Paesani said. “Nowadays, we can afford calculations that ten years ago we couldn’t even dream about because of these developments, both on the NAMD software and on the hardware. All of these computing clusters that XSEDE provides are actually quite useful for all molecular dynamic simulations.”

Through XSEDE, Paesani used several supercomputing systems, including Gordon, Comet, and Trestles at the San Diego Supercomputer Center; Kraken at the National Institute for Computational Sciences; and Ranger, Stampede, and Stampede2 at TACC.

“Because all the simulations were run on GPUs, Maverick was the perfect choice for this type of application,” Paesani said.

Computation and experiment worked together to produce results. “I think this is a beautiful example of the synergy between theory and experiment,” Paesani said. “Experiment posed the first question. Theory and computer simulation addressed that question, providing some understanding of the mechanism. And then we used computer simulation to make predictions and ask the experiments to test the validity of these hypotheses. Everything worked out very nicely because the simulations explained the experiments at the beginning. The predictions that were made were confirmed by the experiments at the end. It is an example of the perfect synergy between experiments and theoretical modeling.”

Tezcan added that “chemists traditionally like to build complex molecules from simpler building blocks, and one can envision doing such a combination of design, experiment and computation for smaller molecules to predict their behavior. But the fact that we can do it on molecules that are composed of hundreds of thousands of atoms is quite unprecedented.”

The science team also used molecular dynamics simulations to rigorously investigate the role of water in directing the lattice motion of C98RhuA. “This study showed us how important the active role of water is in controlling the structural dynamics of complex macromolecules, which in biochemistry can get overlooked,” Tezcan said. “But this study showed, very clearly, that the dynamics of these proteins are driven actively by water dynamics, which I think brings the importance of water to the fore.”

Rob Alberstein, graduate student in the Tezcan group and first author of the Nature Chemistry article, added “At the heart of this research is understanding how the properties of materials arise from the underlying molecular or atomic structure. It’s very difficult to describe. In this case we really sought to draw that connection as clearly as we could understand it ourselves and really show not only as from the experiment, where we can look at the macroscale behavior of these materials, but then with the computation relate that behavior back to what is actually going on at the scale of molecules. As we continue to develop as a society, we need to develop new materials for new sorts of global issues (water purification, etc), so understanding this relationship between atomic structure and the material property itself and the ability to predict those is going to become increasingly important.”

The study, “Engineering the entropy-driven free-energy landscape of a dynamic nanoporous protein assembly,” (doi:10.1038/s41557-018-0053-4) was published in April of 2018 in the journal Nature Chemistry. The authors are Robert Alberstein, Yuta Suzuki, Francesco Paesani, and F. Akif Tezcan of the University of California, San Diego. Funding was provided by the US Department of Energy Award DE-SC0003844 and by the National Science Foundation through grant CHE-1453204. All computer simulations were performed on the NSF-funded Extreme Science and Engineering Discovery Environment through grant ACI-1053575.


Source: Jorge Salazar, TACC

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

CFD on ORNL’s Titan Simulates Cleaner, Low-MPG ‘Opposed Piston’ Engine

December 13, 2018

Pinnacle Engines is out to substantially improve vehicle gasoline efficiency and cut greenhouse gas emissions with a new motor based on an “opposed piston” design that the company hopes will be widely adopted while t Read more…

By Doug Black

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC) is procuring from Atos in two phases over the next year-an Read more…

By Tiffany Trader

Nvidia Leads Alpha MLPerf Benchmarking Round

December 12, 2018

Seven months after the launch of its AI benchmarking suite, the MLPerf consortium is releasing the first round of results based on submissions from Nvidia, Google and Intel. Of the seven benchmarks encompassed in version Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

AI Can Be Scary. But Choosing the Wrong Partners Can Be Mortifying!

As you continue to dive deeper into AI, you will discover it is more than just deep learning. AI is an extremely complex set of machine learning, deep learning, reinforcement, and analytics algorithms with varying compute, storage, memory, and communications needs. Read more…

IBM Accelerated Insights

4 Ways AI Analytics Projects Fail — and How to Succeed

“How do I de-risk my AI-driven analytics projects?” This is a common question for organizations ready to modernize their analytics portfolio. Here are four ways AI analytics projects fail—and how you can ensure success. Read more…

Neural Network ‘Synapse’ Technology Showcased at IEEE Meeting

December 12, 2018

There’s nice snapshot of advancing work to develop improved neural network “synapse” technologies posted yesterday on IEEE Spectrum. Lower power, ease of use, manufacturability, and performance are all key paramete Read more…

By John Russell

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Nvidia Leads Alpha MLPerf Benchmarking Round

December 12, 2018

Seven months after the launch of its AI benchmarking suite, the MLPerf consortium is releasing the first round of results based on submissions from Nvidia, Goog Read more…

By Tiffany Trader

IBM, Nvidia in AI Data Pipeline, Processing, Storage Union

December 11, 2018

IBM and Nvidia today announced a new turnkey AI solution that combines IBM Spectrum Scale scale-out file storage with Nvidia’s GPU-based DGX-1 AI server to pr Read more…

By Doug Black

Mellanox Uses Univa to Extend Silicon Design HPC Operation to Azure

December 11, 2018

Call it a corollary to Murphy’s Law: When a system is most in demand, when end users are most dependent on the system performing as required, when it’s crunch time – that’s when the system is most likely to blow up. Or make you wait in line to use it. Read more…

By Doug Black

Topology Can Help Us Find Patterns in Weather

December 6, 2018

Topology--the study of shapes--seems to be all the rage. You could even say that data has shape, and shape matters. Shapes are comfortable and familiar concepts, so it is intriguing to see that many applications are being recast to use topology. For instance, looking for weather and climate patterns. Read more…

By James Reinders

Zettascale by 2035? China Thinks So

December 6, 2018

Exascale machines (of at least a 1 exaflops peak) are anticipated to arrive by around 2020, a few years behind original predictions; and given extreme-scale performance challenges are not getting any easier, it makes sense that researchers are already looking ahead to the next big 1,000x performance goal post: zettascale computing. Read more…

By Tiffany Trader

Robust Quantum Computers Still a Decade Away, Says Nat’l Academies Report

December 5, 2018

The National Academies of Science, Engineering, and Medicine yesterday released a report – Quantum Computing: Progress and Prospects – whose optimism about Read more…

By John Russell

Revisiting the 2008 Exascale Computing Study at SC18

November 29, 2018

A report published a decade ago conveyed the results of a study aimed at determining if it were possible to achieve 1000X the computational power of the the Read more…

By Scott Gibson

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

Google Releases Machine Learning “What-If” Analysis Tool

September 12, 2018

Training machine learning models has long been time-consuming process. Yesterday, Google released a “What-If Tool” for probing how data point changes affect a model’s prediction. The new tool is being launched as a new feature of the open source TensorBoard web application... Read more…

By John Russell

The Convergence of Big Data and Extreme-Scale HPC

August 31, 2018

As we are heading towards extreme-scale HPC coupled with data intensive analytics like machine learning, the necessary integration of big data and HPC is a curr Read more…

By Rob Farber

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This