XSEDE Resources Lead to Better Understanding of Jupiter and Saturn

April 26, 2021

April 26, 2021 — The solar system’s two largest planets, Jupiter and Saturn, received worldwide publicity on December 21, 2020, as they glided closer than they’ve been since 1623. Visible around the globe, “The Great Conjunction” placed the two planets only 0.1 degree apart from one another.

Typically, however, Jupiter and Saturn have been known to “keep their distance” from one another. And, understanding why these two planets have so much space between them was the focus of an Icarus journal article earlier this month. Born Eccentric: Constraints on Jupiter and Saturn’s Pre-Instability Orbits encompassed the analysis of supercomputer simulations by an international team of researchers – thanks to allocations from the National Science Foundation’s (NSF) Extreme Science and Engineering Discovery Environment (XSEDE).

Comet at the San Diego Supercomputer Center at UC San Diego and Bridges at the Pittsburgh Supercomputing Center were used to run more than 6000 simulations to better understand the space between Jupiter and Saturn. The simulations’ development and analyses was led by Carnegie Institution of Washington Postdoctoral Fellow Matthew Clement, who teamed with astronomer Sean Raymond of the Laboratoire d’ Astrophysique de Bordeaux and several researchers from the University of Oklahoma, Rice University, and the Southwest Research Institute.

“We are fairly certain that the giant planets, including Jupiter and Saturn, were born closer together than they are today and one challenge to determine how and why they are now so far apart is to better understand how Jupiter’s orbit became so eccentric and elliptical (non-circular),” said Clement. “Historically, simulations that reproduce Jupiter’s orbital shape tend to push Saturn too far out in to the outer solar system, beyond where Uranus is today, so with our study, we used initial conditions consistent with hydrodynamical models of the giant planets forming in gaseous proto-planetary disks to more consistently generate Jupiter and Saturn-like orbits.”

Comet provided researchers with a large number of cores so that they could run more than 6000 simulations related to the spacing of Jupiter and Saturn. They found that Jupiter and Saturn most likely formed with Jupiter making two orbits for every one of Saturn’s, rather than a resonance of three Jupiter orbits for every two of Saturns, which most previous studies had assumed. Credit: NASA

While previous studies have assumed that Jupiter and Saturn were born in what is known as a 3:2 mean motion resonance (Jupiter went around the Sun three times for every two Saturn cycles), Clement’s research considered an initial 2:1 resonance (two Jupiter orbits for every one of Saturn’s). Thus, the planets formed further apart.

“This is the best way to explain the planets’ modern orbital dance,” he said. “Interestingly, perhaps the best observed photo-planetary disk, known as PDS-70, a system of planets in the process of growing, seems to be dominated by two giant planets similar to Jupiter and Saturn in our own solar system also in a 2:1 resonance.”

Understanding how Jupiter and Saturn acquired their orbital shapes and mutual spacing may not seem like that big of a deal, but it turns out that the interplay of these two gas giants’ orbits drive a good amount of the solar system’s evolution as a whole. Jupiter itself makes up about two-thirds of all the total mass in planets, asteroids, and comets in the solar system. Meanwhile, Saturn comprises the majority of the rest of the material.

“The orbital dance that Jupiter and Saturn perform today drive a myriad of dynamical effects in the solar system, and likely affected the Earth’s growth in the past,” explained Clement. “This helps us understand why Earth is a nice temperate and water-rich place where we can live, while Mars and Venus are quite inhospitable to life as we know it.”

Understanding Jupiter and Saturn in this manner also helps us compare our own system of planets to the large contingent of discovered exoplanets. Clement said that if we were observing our own solar system from afar, with current techniques, we would only be able to detect Jupiter and Saturn – not any of the other planets. However, when we look at the population of planets detected so far with masses similar to that of Jupiter and Saturn, their orbits look nothing like those in the solar system.

Some systems host Jupiter-like planets on very short orbits, closer to the Sun than Mercury (the so-called hot Jupiters). Others host Jupiter and Saturn-like planets on more distant orbits (like those of the actual Jupiter and Saturn), however their orbital eccentricities are extremely high (only comets have orbits this extreme in our solar system).  There are also a few systems with four or more giant planets on wide orbits with low eccentricities like our giant planets, but they are in a chain of resonances. So, the solar system exists in the curious “middle ground” between those last two types of systems.

“Our work essentially tries to understand why we appear to be the ‘missing link’ between these two types of systems, and our results indicate that this is because of Jupiter and Saturn formed in the 2:1 resonance rather than a more compact chain like the 3:2,” said Clement. “Because this is such a highly chaotic process, we would not have been able to take our project to this scale of thousands of simulations without Comet and Bridges.”

“The computational resources available to us through XSEDE were key to the success of our project, which I learned about through our campus champion Floyd Fayton,” concluded Clement. “XSEDE really opens up all kinds of possibilities in terms of being able to investigate complex problems and new ideas – these resources provide an invaluable contribution to my field of science.”

Key funding for this research was provided by the National Science Foundation grant AST-1615975, NSF CAREER award 1846388, the NASA Astrobiology Institute solicitation NNH12ZDA002C and cooperative agreement number NNA13AA93A, and NASA grant 80NSSC18K0828. Time on Comet and Bridges were awarded via XSEDE allocation TG-AST200004.


Source: XSEDE

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire