XSEDE Systems Stampede1 and Comet Help Sample Protein Folding in Bone Regeneration Study

December 20, 2017

Dec. 20, 2017 — Some secrets to repair our skeletons might be found in the silky webs of spiders, according to recent experiments guided by supercomputers. Scientists involved say their results will help understand the details of osteoregeneration, or how bones regenerate.

A study found that genes could be activated in human stem cells that initiate biomineralization, a key step in bone formation. Scientists achieved these results with engineered silk derived from the dragline of golden orb weaver spider webs, which they combined with silica. The study appeared September 2017 in the journal Advanced Functional Materials and has been the result of the combined effort from three institutions: Tufts University, Massachusetts Institute of Technology and Nottingham Trent University.

XSEDE supercomputers Stampede at TACC and Comet at SDSC helped study authors simulate the head piece domain of the cell membrane protein receptor integrin in solution, based on molecular dynamics modeling. (Davoud Ebrahimi)

Study authors used the supercomputers Stampede1 at the Texas Advanced Computing Center (TACC) and Comet at the San Diego Supercomputer Center (SDSC) at the University of California San Diego through an allocation from XSEDE, the eXtreme Science and Engineering Discovery Environment, funded by the National Science Foundation. The supercomputers helped scientists model how the cell membrane protein receptor called integrin folds and activates the intracellular pathways that lead to bone formation. The research will help larger efforts to cure bone growth diseases such as osteoporosis or calcific aortic valve disease.

“This work demonstrates a direct link between silk-silica-based biomaterials and intracellular pathways leading to osteogenesis,” said study co-author Zaira Martín-Moldes, a post-doctoral scholar at the Kaplan Lab at Tufts University. She researches the development of new biomaterials based on silk. “The hybrid material promoted the differentiation of human mesenchymal stem cells, the progenitor cells from the bone marrow, to osteoblasts as an indicator of osteogenesis, or bone-like tissue formation,” Martín-Moldes said.

“Silk has been shown to be a suitable scaffold for tissue regeneration, due to its outstanding mechanical properties,” Martín-Moldes explained. It’s biodegradable. It’s biocompatible. And it’s fine-tunable through bioengineering modifications. The experimental team at Tufts University modified the genetic sequence of silk from golden orb weaver spiders (Nephila clavipes) and fused the silica-promoting peptide R5 derived from a gene of the diatom Cylindrotheca fusiformis silaffin.

The bone formation study targeted biomineralization, a critical process in materials biology. “We would love to generate a model that helps us predict and modulate these responses both in terms of preventing the mineralization and also to promote it,” Martín-Moldes said.

“High performance supercomputing simulations are utilized along with experimental approaches to develop a model for the integrin activation, which is the first step in the bone formation process,” said study co-author Davoud Ebrahimi, a postdoctoral associate at the Laboratory for Atomistic and Molecular Mechanics of the Massachusetts Institute of Technology.

Integrin embeds itself in the cell membrane and mediates signals between the inside and the outside of cells. In its dormant state, the head unit sticking out of the membrane is bent over like a nodding sleeper. This inactive state prevents cellular adhesion. In its activated state, the head unit straightens out and is available for chemical binding at its exposed ligand region.

“Sampling different states of the conformation of integrins in contact with silicified or non-silicified surfaces could predict activation of the pathway,” Ebrahimi explained. Sampling the folding of proteins remains a classically computationally expensive problem, despite recent and large efforts in developing new algorithms.

The derived silk–silica chimera they studied weighed in around a hefty 40 kilodaltons. “In this research, what we did in order to reduce the computational costs, we have only modeled the head piece of the protein, which is getting in contact with the surface that we’re modeling,” Ebrahimi said. “But again, it’s a big system to simulate and can’t be done on an ordinary system or ordinary computers.”

The Computational team at MIT used the molecular dynamics package called Gromacs, a software for chemical simulation available on both the Stampede1 and Comet supercomputing systems. “We could perform those large simulations by having access to XSEDE computational clusters,” he said.

“I have a very long-standing positive experience using XSEDE resources,” said Ebrahimi. “I’ve been using them for almost 10 years now for my projects during my graduate and post-doctoral experiences. And the staff at XSEDE are really helpful if you encounter any problems. If you need software that should be installed and it’s not available, they help and guide you through the process of doing your research. I remember exchanging a lot of emails the first time I was trying to use the clusters, and I was not so familiar. I got a lot of help from XSEDE resources and people at XSEDE. I really appreciate the time and effort that they put in order to solve computational problems that we usually encounter during our simulation,” Ebrahimi reflected.

Computation combined with experimentation helped advance work in developing a model of osteoregeneration. “We propose a mechanism in our work,” explained Martín-Moldes, “that starts with the silica-silk surface activating a specific cell membrane protein receptor, in this case integrin αVβ3.” She said this activation triggers a cascade in the cell through three mitogen-activated protein kinsase (MAPK) pathways, the main one being the c-Jun N-terminal kinase (JNK) cascade.

She added that other factors are also involved in this process such as Runx2, the main transcription factor related to osteogenesis. According to the study, the control system did not show any response, and neither did the blockage of integrin using an antibody, confirming its involvement in this process. “Another important outcome was the correlation between the amount of silica deposited in the film and the level of induction of the genes that we analyzed,” Martín-Moldes said. “These factors also provide an important feature to control in future material design for bone-forming biomaterials.”

“We are doing a basic research here with our silk-silica systems,” Martín-Moldes explained. “But we are helping in building the pathway to generate biomaterials that could be used in the future. The mineralization is a critical process. The final goal is to develop these models that help design the biomaterials to optimize the bone regeneration process, when the bone is required to regenerate or to minimize it when we need to reduce the bone formation.”

These results help advance the research and are useful in larger efforts to help cure and treat bone diseases. “We could help in curing disease related to bone formation, such as calcific aortic valve disease or osteoporosis, which we need to know the pathway to control the amount of bone formed, to either reduce or increase it, Ebrahimi said.

“Intracellular Pathways Involved in Bone Regeneration Triggered by Recombinant Silk–Silica Chimeras,” DOI: 10.1002/adfm.201702570, appeared September 2017 in the journal Advanced Functional Materials. The National Institutes of Health funded the study, and the National Science Foundation through XSEDE provided computational resources. The study authors are Zaira Martín-Moldes, Nina Dinjaski, David L. Kaplan of Tufts University; Davoud Ebrahimi and Markus J. Buehler of the Massachusetts Institute of Technology; Robyn Plowright and Carole C. Perry of Nottingham Trent University.


Source: Jorge Salazar, TACC

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

UCSD, AIST Forge Tighter Alliance with AI-Focused MOU

January 18, 2018

The rich history of collaboration between UC San Diego and AIST in Japan is getting richer. The organizations entered into a five-year memorandum of understanding on January 10. The MOU represents the continuation of a 1 Read more…

By Tiffany Trader

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Tennessee), Satoshi Matsuoka (Tokyo Institute of Technology), Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown and Spectre security updates on the performance of popular H Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE and NREL Take Steps to Create a Sustainable, Energy-Efficient Data Center with an H2 Fuel Cell

As enterprises attempt to manage rising volumes of data, unplanned data center outages are becoming more common and more expensive. As the cost of downtime rises, enterprises lose out on productivity and valuable competitive advantage without access to their critical data. Read more…

Fostering Lustre Advancement Through Development and Contributions

January 17, 2018

Six months after organizational changes at Intel's High Performance Data (HPDD) division, most in the Lustre community have shed any initial apprehension around the potential changes that could affect or disrupt Lustre Read more…

By Carlos Aoki Thomaz

UCSD, AIST Forge Tighter Alliance with AI-Focused MOU

January 18, 2018

The rich history of collaboration between UC San Diego and AIST in Japan is getting richer. The organizations entered into a five-year memorandum of understandi Read more…

By Tiffany Trader

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Fostering Lustre Advancement Through Development and Contributions

January 17, 2018

Six months after organizational changes at Intel's High Performance Data (HPDD) division, most in the Lustre community have shed any initial apprehension aroun Read more…

By Carlos Aoki Thomaz

When the Chips Are Down

January 11, 2018

In the last article, "The High Stakes Semiconductor Game that Drives HPC Diversity," I alluded to the challenges facing the semiconductor industry and how that may impact the evolution of HPC systems over the next few years. I thought I’d lift the covers a little and look at some of the commercial challenges that impact the component technology we use in HPC. Read more…

By Dairsie Latimer

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

ANL’s Rick Stevens on CANDLE, ARM, Quantum, and More

January 8, 2018

Late last year HPCwire caught up with Rick Stevens, associate laboratory director for computing, environment and life Sciences at Argonne National Laboratory, f Read more…

By John Russell

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Leading Solution Providers

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This