XSEDE’s Maverick Helps Explore Next Generation Solar Cells and LEDs

February 5, 2018

Feb. 5, 2018 — Solar cells can’t stand the heat. Photovoltaics lose some energy as heat in converting sunlight to electricity. The reverse holds true for lights made with light-emitting diodes (LED), which convert electricity into light. Some scientists think there might be light at the end of the tunnel in the hunt for better semiconductor materials for solar cells and LEDs, thanks to supercomputer simulations that leveraged graphics processing units to model nanocrystals of silicon.

Defect-induced conical intersections (DICIs) allow one to connect material structure to the propensity for nonradiative decay, a source of heat loss in solar cells and LED lights. XSEDE Maverick supercomputer allocation accelerated the quantum chemistry calculations. Credit: Ben Levine.

Scientists call the heat loss in LEDs and solar cells non-radiative recombination. And they’ve struggled to understand the basic physics of this heat loss, especially for materials with molecules of over 20 atoms.

“The real challenge here is system size,” explained Ben Levine, associate professor in the Department of Chemistry at Michigan State University. “Going from that 10-20 atom limit up to 50-100-200 atoms has been the real computation challenge here,” Levine said. That’s because the calculations involved scale with the size of the system to some power, sometimes four or up to six, Levine said. “Making the system ten times bigger actually requires us to perform maybe 10,000 times more operations. It’s really a big change in the size of our calculations.”

Levine’s calculations involve a concept in molecular photochemistry called a conical intersection – points of degeneracy between the potential energy surfaces of two or more electronic states in a closed system. A perspective study published September of 2017 in the Journal of Physical Chemistry Letters found that recent computational and theoretical developments have enabled the location of defect-induced conical intersections in semiconductor nanomaterials.

“The key contribution of our work has been to show that we can understand these recombination processes in materials by looking at these conical intersections,” Levine said. “We’ve been able to show is that the conical intersections can be associated with specific structural defects in the material.”

The holy grail for materials science would be to predict non-radiative recombination behavior of a material based on its structural defects. These defects come from ‘doping‘ semiconductors with impurities to control and modulate its electrical properties.

Looking beyond the ubiquitous silicon semiconductor, scientists are turning to silicon nanocrystals as candidate materials for the next generation of solar cells and LEDs. Silicon nanocrystals are molecular systems in the ballpark of 100 atoms with extremely tunable light emission compared to bulk silicon. And scientists are limited only by their imagination in ways to dope and create new kind of silicon nanocrystals.

“We’ve been doing this for about five years now,” Levine explained about his conical intersection work. “The main focus of our work has been proof-of concept, showing that these are calculations that we can do; that what we find is in good agreement with experiment; and that it can give us insight into experiments that we couldn’t get before,” Levine said.

Levine addressed the computational challenges of his work using graphics processing unit (GPU) hardware, the kind typically designed for computer games and graphics design. GPUs excel at churning through linear algebra calculations, the same math involved in Levine’s calculations that characterize the behavior of electrons in a material. “Using the graphics processing units, we’ve been able to accelerate our calculations by hundreds of times, which has allowed us to go from the molecular scale, where we were limited before, up to the nano-material size,” Levine said.

Cyberinfrastructure allocations from XSEDE, the eXtreme Science and Engineering Discovery Environment, gave Levine access to over 975,000 compute hours on the Maverick supercomputing system at the Texas Advanced Computing Center (TACC). Maverick is a dedicated visualization and data analysis resource architected with 132 NVIDIA Tesla K40 “Atlas” GPU for remote visualization and GPU computing to the national community.

“Large-scale resources like Maverick at TACC, which have lots of GPUs, have been just wonderful for us,” Levine said. “You need three things to be able to pull this off. You need good theories. You need good computer hardware. And you need facilities that have that hardware in sufficient quantity, so that you can do the calculations that you want to do.”

Levine explained that he got started using GPUs to do science ten years ago back when he was in graduate school, chaining together SONY PlayStation 2 video game consoles to perform quantum chemical calculations. “Now, the field has exploded, where you can do lots and lots of really advanced quantum mechanical calculations using these GPUs,” Levine said. “NVIDIA has been very supportive of this. They’ve released technology that helps us do this sort of thing better than we could do it before.” That’s because NVIDIA developed GPUs to more easily pass data, and they developed the popular and well-documented CUDA interface.

“A machine like Maverick is particularly useful because it brings a lot of these GPUs into one place,” Levine explained. “We can sit down and look at 100 different materials or at a hundred different structures of the same material.” We’re able to do that using a machine such as Maverick. Whereas with a desktop gaming machine just has one GPU, we can do one calculation at a time. The large-scale studies aren’t possible,” said Levine.

Now that Levine’s group has demonstrated the ability to predict conical intersections associated with heat loss from semiconductors and semiconductor nanomaterials, he said the next step is to do materials design in the computer.

Said Levine: “We’ve been running some calculations where we use a simulated evolution, called a genetic algorithm, where you simulate the evolution process. We’re actually evolving materials that have the property that we’re looking for, one generation after the other. Maybe we have a pool of 20 different molecules. We predict the properties of those molecules. Then we randomly pick, say, less than ten of them that have desirable properties. And we modify them in some way. We mutate them. Or in some chemical sense ‘breed’ them with one another to create new molecules, and test those. This all happens automatically in the computer. A lot of this is done on Maverick also. We end up with a new molecule that nobody has ever looked at before, but that we think they should look at in the lab. This automated design processes has already started.”

The study, “Understanding Nonradiative Recombination through Defect-Induced Conical Intersections,” was published September 7, 2017 in the Journal of Physical Chemistry Letters (DOI: 10.1021/acs.jpclett.7b01707). The study authors are Yinan Shu (University of Minnesota); B. Scott Fales (Stanford University, SLAC); Wei-Tao Peng and Benjamin G. Levine (Michigan State University). The National Science Foundation funded the study (CHE-1565634).


Source: Jorge Salazar, TACC

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

GTC 2019: Chief Scientist Bill Dally Provides Glimpse into Nvidia Research Engine

March 22, 2019

Amid the frenzy of GTC this week – Nvidia’s annual conference showcasing all things GPU (and now AI) – William Dally, chief scientist and SVP of research, provided a brief but insightful portrait of Nvidia’s rese Read more…

By John Russell

ORNL Helps Identify Challenges of Extremely Heterogeneous Architectures

March 21, 2019

Exponential growth in classical computing over the last two decades has produced hardware and software that support lightning-fast processing speeds, but advancements are topping out as computing architectures reach thei Read more…

By Laurie Varma

Interview with 2019 Person to Watch Jim Keller

March 21, 2019

On the heels of Intel's reaffirmation that it will deliver the first U.S. exascale computer in 2021, which will feature the company's new Intel Xe architecture, we bring you our interview with our 2019 Person to Watch Jim Keller, head of the Silicon Engineering Group at Intel. Read more…

By HPCwire Editorial Team

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Insurance: Where’s the Risk?

Insurers are facing extreme competitive challenges in their core businesses. Property and Casualty (P&C) and Life and Health (L&H) firms alike are highly impacted by the ongoing globalization, increasing regulation, and digital transformation of their client bases. Read more…

What’s New in HPC Research: TensorFlow, Buddy Compression, Intel Optane & More

March 20, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

GTC 2019: Chief Scientist Bill Dally Provides Glimpse into Nvidia Research Engine

March 22, 2019

Amid the frenzy of GTC this week – Nvidia’s annual conference showcasing all things GPU (and now AI) – William Dally, chief scientist and SVP of research, Read more…

By John Russell

At GTC: Nvidia Expands Scope of Its AI and Datacenter Ecosystem

March 19, 2019

In the high-stakes race to provide the AI life-cycle solution of choice, three of the biggest horses in the field are IBM, Intel and Nvidia. While the latter is only a fraction of the size of its two bigger rivals, and has been in business for only a fraction of the time, Nvidia continues to impress with an expanding array of new GPU-based hardware, software, robotics, partnerships and... Read more…

By Doug Black

Nvidia Debuts Clara AI Toolkit with Pre-Trained Models for Radiology Use

March 19, 2019

AI’s push into healthcare got a boost yesterday with Nvidia’s release of the Clara Deploy AI toolkit which includes 13 pre-trained models for use in radiolo Read more…

By John Russell

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

Oil and Gas Supercloud Clears Out Remaining Knights Landing Inventory: All 38,000 Wafers

March 13, 2019

The McCloud HPC service being built by Australia’s DownUnder GeoSolutions (DUG) outside Houston is set to become the largest oil and gas cloud in the world th Read more…

By Tiffany Trader

Quick Take: Trump’s 2020 Budget Spares DoE-funded HPC but Slams NSF and NIH

March 12, 2019

U.S. President Donald Trump’s 2020 budget request, released yesterday, proposes deep cuts in many science programs but seems to spare HPC funding by the Depar Read more…

By John Russell

Nvidia Wins Mellanox Stakes for $6.9 Billion

March 11, 2019

The long-rumored acquisition of Mellanox came to fruition this morning with GPU chipmaker Nvidia’s announcement that it has purchased the high-performance net Read more…

By Doug Black

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Move Over Lustre & Spectrum Scale – Here Comes BeeGFS?

November 26, 2018

Is BeeGFS – the parallel file system with European roots – on a path to compete with Lustre and Spectrum Scale worldwide in HPC environments? Frank Herold Read more…

By John Russell

France to Deploy AI-Focused Supercomputer: Jean Zay

January 22, 2019

HPE announced today that it won the contract to build a supercomputer that will drive France’s AI and HPC efforts. The computer will be part of GENCI, the Fre Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This