Yale Researchers Use TACC, SDSC Supercomputing Resources to Study Vascular Disease

October 2, 2015

Oct. 2 — Abdominal aortic aneurysm (AAA) is a vascular disease that affects tens of thousands of people around the world each year. The disease occurs most commonly in men over 60, and is characterized by a dilation of the abdominal aortic wall and often a persistent blood clot.

The aorta is the largest artery in the body; it allows oxygenated blood to be distributed to organs and tissues throughout the body. Aneurysms, or localized dilatations, can form in the ascending or descending portions of the aorta within the chest or within the descending portion in the abdomen. Abdominal aneurysms are more common and when they rupture, they are often lethal.

Because aneurysms are stressed by the continuous action of changing blood pressures, methods of engineering that were developed to study the flow of viscous fluids (e.g., blood) and the failure of structures (rupture of the aorta) can be used to help understand the complex history of these deadly lesions. Once an AAA ruptures, death is nearly inevitable due to extreme internal bleeding, signifying the critical need to predict which aneurysms are most vulnerable.

To understand why some AAAs rupture and others do not, researchers must first understand better how they form and enlarge, digging deep into both the micro and macro levels to understand the complex interactions that define the disease.

One group attempting to accomplish this task is the Continuum Biomechanics Lab in the Department of Biomedical Engineering at Yale University. Using computational models in combination with biological experiments, researchers in the lab can study AAA development at both the micro and macro scales.

Jay Humphrey, professor of biomedical engineering, emphasizes that “the biological and mechanical complexity of AAAs demands a multidisciplinary team to advance our understanding.” George Tellides, professor of surgery and Andrew Sherman at the Yale Center for Research Computing, teamed up with Humphrey to enable the development of patient-specific computational models for multiple aspects of AAAs. They, in combination with post-doctoral fellows and Ph.D. students have recently put forth new hypotheses on factors that drive intraluminal, or interior areas of the artery, clotting as well as the mechanobiological stability of the diseased aortas.

To protect the identity of patients, associated medical images are de-identified and provided to the research team for analysis.

According to Paolo Di Achille, a researcher in the group, “the medical images we have can be processed with semi-automatic algorithms to reconstruct the geometry of the vasculature. Our goal is to get accurate representations of the blood flow throughout the cardiac cycle. Then we look more specifically at the interactions between blood flow and both the cells that line the vessel wall and the cells within the blood that are responsible for clotting.”

To explore the hemodynamics in AAAs, the fluid dynamics of blood flows, the researchers rely on a mix of computational resources from Yale and the Extreme Science and Engineering Discovery Environment (XSEDE), which is funded by the National Science Foundation.

“Access to XSEDE resources is a key aspect of our research. The code we started working with was already equipped to work on supercomputers, but having access to high performance computers enables us to explore additional parallel capabilities,” said Di Achille.

To take full advantage of XSEDE’s capabilities, Di Achille and Humphrey applied to XSEDE’s Extended Collaboration and Support Service (ECSS), a program that pairs researchers with expert staff members in advanced cyberinfrastructure. The researchers at Yale partnered with researcher Yifeng Cui at the San Diego Supercomputing Center (SDSC) to optimize their code and improve simulations. Although the researchers’ ECSS allocation expired in August, they found the program very helpful to adapting their new codes to a supercomputing environment.

“I would say that’s the biggest advantage of ECSS, talking with experts to get real insight into how our codes can be improved. It’s the best way for us to optimize our codes, because we don’t have time to read all the literature on these new architectures,” said Di Achille.

Working with Cui, the team ran their code on TACC’s most powerful supercomputer, Stampede, and used its visualization nodes to create realistic depictions of AAAs. The team also used the supercomputer Trestles, which was recently transferred from SDSC to the Arkansas High Performance Computing Center.

The researcher’s sophisticated models allowed them to investigate another major issue in AAA — thrombus formation.

Thrombus, or a blood clot, is estimated to develop in three-fourths of all AAAs. Its presence usually indicates a more dangerous form of the disease. Platelets are blood-borne cells that control the formation and dissolution of thrombus.

“Normally blood clots form when we have wounds or some laceration of the vessel wall,” said Di Achille. “For some reason, at some point of AAA evolution, blood clots form and we want to find out why.”

The group’s study of how thrombus arise in AAAs, their progression, and why certain aneurysms develop them and others don’t, led to a paper published in late 2014 in the Proceedings of Royal Society. Di Achille describes the group’s most interesting finding as a possible explanation for the unique biomechanical factors that lead to thrombus formation.

“The enlargement of the vessel in this disease seems to create a unique fluid dynamic situation that both activates and localizes platelets within AAAs,” said Di Achille.

To advance their research, the team is using this information to develop more comprehensive models to track the progression of the disease. Ultimately, it is hoped that this research will not only increase our basic understanding of AAAs, but it will also help clinicians make more informed decisions when treating patients.

Said Di Achille: “Clinical decisions are extremely complex. If our modeling results could help in this decision process and improve outcomes, that would be very satisfying.”

Source: Makeda Easter, TACC

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPE to Acquire Cray for $1.3B

May 17, 2019

Venerable supercomputer pioneer Cray Inc. will be acquired by Hewlett Packard Enterprise for $1.3 billion under a definitive agreement announced this morning. The news follows HPE’s acquisition nearly three years ago o Read more…

By Doug Black & Tiffany Trader

China Establishes Seventh National Supercomputing Center

May 16, 2019

Chinese media is reporting that China will construct a new National Supercomputer Center in Zhengzhou, in central China's Henan Province. The new Zhengzhou facility will house a 100-petaflops supercomputer and will be ta Read more…

By Staff report

Interview with 2019 Person to Watch Ken King

May 16, 2019

Today, as the final installment of our HPCwire People to Watch focus series, we present our interview with Ken King, general manager of OpenPOWER for the IBM Systems Group. Ken is responsible for building and managing t Read more…

By HPCwire Editorial Team

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

For decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Autonomous Vehicles: New challenges for the CAE Data Center

Managing infrastructure complexity in the age of AI

When most of us hear the term autonomous vehicles, we conjure up images of driverless Waymos or robotic transport trucks driving long-haul highway routes. Read more…

What’s New in HPC Research: Image Classification, Crowd Computing, Genome Informatics & More

May 15, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

HPE to Acquire Cray for $1.3B

May 17, 2019

Venerable supercomputer pioneer Cray Inc. will be acquired by Hewlett Packard Enterprise for $1.3 billion under a definitive agreement announced this morning. T Read more…

By Doug Black & Tiffany Trader

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

CCC Offers Draft 20-Year AI Roadmap; Seeks Comments

May 14, 2019

Artificial Intelligence in all its guises has captured much of the conversation in HPC and general computing today. The White House, DARPA, IARPA, and Departmen Read more…

By John Russell

Cascade Lake Shows Up to 84 Percent Gen-on-Gen Advantage on STAC Benchmarking

May 13, 2019

The Securities Technology Analysis Center (STAC) issued a report Friday comparing the performance of Intel's Cascade Lake processors with previous-gen Skylake u Read more…

By Tiffany Trader

Nvidia Claims 6000x Speed-Up for Stock Trading Backtest Benchmark

May 13, 2019

A stock trading backtesting algorithm used by hedge funds to simulate trading variants has received a massive, GPU-based performance boost, according to Nvidia, Read more…

By Doug Black

ASC19: NTHU Returns to Glory

May 11, 2019

As many of you Student Cluster Competition fanatics know by now, Taiwan’s National Tsing Hua University (NTHU) won the gold medal at the recently concluded AS Read more…

By Dan Olds

Intel 7nm GPU on Roadmap for 2021, OneAPI Coming This Year

May 8, 2019

At Intel's investor meeting today in Santa Clara, Calif., the company filled in details of its roadmap and product launch plans and sought to allay concerns about delays of its 10nm chips. In laying out its 10nm and 7nm timelines, Intel revealed that its first 7nm product would be... Read more…

By Tiffany Trader

Ten Great Reasons to Build the 1.5 Exaflops Frontier

May 7, 2019

It’s perhaps obvious that the fundamental reason for building expensive exascale computers is to drive science and industry forward, realizing the resulting b Read more…

By John Russell

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

France to Deploy AI-Focused Supercomputer: Jean Zay

January 22, 2019

HPE announced today that it won the contract to build a supercomputer that will drive France’s AI and HPC efforts. The computer will be part of GENCI, the Fre Read more…

By Tiffany Trader

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

Nvidia Claims 6000x Speed-Up for Stock Trading Backtest Benchmark

May 13, 2019

A stock trading backtesting algorithm used by hedge funds to simulate trading variants has received a massive, GPU-based performance boost, according to Nvidia, Read more…

By Doug Black

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This