A serverless architecture for high performance financial modelling

By Amazon Web Services

September 13, 2022

Contributions from Blythe Walker , CTO RenaissanceRe, Colum Thorne, VP Platform Architecture RenaissanceRe, Eoin Shanaghy – CTO fourTheorem, Luciano Mammino, Senior Cloud Architect fourTheorem, Matthew Meckes, Senior Serverless Specialist AWS

RenaissanceRe is one of the world’s leading reinsurance companies, consistently recognized for our innovation, technical excellence, and creative problem-solving. We specialize in matching well-structured risks with efficient sources of capital to help companies and government entities manage the risks of operating in a volatile and uncertain world, including climate change, natural hazards like wildfires and hurricanes, cyber threats, and significant societal upheaval. In 2021 gross premiums were $8B with around $18B of capital under management.

Understanding deal and portfolio risk and capital requirements is a computationally expensive process that requires the execution of multiple financial forecasting models every day and often in real-time. The company invests heavily in developing and refining its modeling expertise and technology to ensure that it can provide world-class services to its customers.

Understanding the risk portfolio requirements

The process of computing market risk exposure is called the portfolio rollup. This process executes Monte-Carlo based risk models and simulations to compute the market exposure across all deals in the portfolio.

The portfolio is a graph that comprises over 7,000 deals with a complex dependency relationship between deals.

RenaissanceRe ran the portfolio rollup as a batch computation processing approximately 45TB of data and producing 600GB of raw analytic output for every run. During typical operations, the requirement is to run around 5 rollup runs per day.

Besides batch-based risk computation, the business requires real-time deal analytics. This mode of operation provides the capability to run risk models on individual deals so that underwriters can price in near real-time, for example, when they are on the phone with a broker. While deal analytics operates on a fraction of the data, it must run at a much higher frequency – thousands of deal analytics runs per day, at peak times.

The on-premises system

RenaissanceRe implemented the previous incarnation of their risk modelling system on-premises.

Figure 1: A Python-based web server distributing jobs to a large Celery cluster through RabbitMQ using Redis and a Network File Share and a high-performing SAN for state management and data persistence. The Celery cluster comprised 9 high specification servers (512GB of RAM and 48 CPU cores).

Because of strong business growth, the number of contracts under risk has grown significantly since this solution was first implemented. This placed considerable stress on the available on-premises compute resources. Specifically:

  • At current volumes, the on-premises system could run a maximum of only 2-3 runs of portfolio rollups per day, each of which could take up to 10 hours. This limited the ability to re-assess the risk position as the portfolio evolved.
  • They executed deal analytics in the same cluster, causing resource contention. This required careful coordination among staff and caused frustration, limiting our business agility.
  • There was a growing requirement to run multiple, isolated, workloads to model additional market exposure scenarios. This could not be done with the on-premises compute and the available resource pool.
  • The overall total cost of ownership (TCO) was high. Adding capacity to the existing cluster required a lot of upfront capacity planning.

The road to AWS and serverless

In 2020 RenaissanceRe decided to stop investing in the on-premises cluster, and to re-imagine the system on AWS. While it would certainly have been possible to lift and shift this workload to EC2, we instead adopted a ‘serverless first’ approach for the migration based on these six high-level goals:

  1. Reduce overall execution times for portfolio rollup, with a target execution time to be close to 1 hour.
  2. Support higher volume of executions (plan for 15x data volume).
  3. Benefit from scale on-demand and reduce costs through a pay-per-use pricing model.
  4. Reduce undifferentiated heavy lifting and lower the overall TCO.
  5. Adopt Infrastructure as Code (IaC) and CI/CD pipelines for reliable, repeatable automated deployments.
  6. Increase business agility and support rapid innovation.

The solution

Achieving these goals required the team to adopt a design for the system that is radically different to the current on-premises system. Figure 2 illustrates the architecture.

Figure 2: Serverless architecture for the risk modelling system with batch workflows using AWS Fargate and real time analytics using AWS Lambda.

The two primary flows are the bulk / batch computation (yellow) for portfolio rollup and the high priority real-time (blue) for deal analytics. Both types execute the same modelling codes and are controlled by the same orchestration components.

When a portfolio rollup or a deal analytics execution starts, we submit it to the execution planner, which is implemented in AWS Step Functions. This builds the execution plan for the run, which is then stored in Amazon ElastiCache for Redis and begins execution of jobs that can run immediately.

We post jobs that are ready to the Amazon Kinesis ‘Job’ stream and from there, we send the jobs to either AWS Fargate or AWS Lambda for execution. The Fargate containers and Lambda modelling functions run the same modelling code, however both services offer different scaling and pricing characteristics; Lambda provides rapid on demand scaling and execution but at a higher price point. This makes it ideal for real-time deal analytics. At the scale of a full portfolio rollup, Lambda is more expensive and the instant scale out is not required, so we compute these jobs on Fargate. This can significantly lower the cost for bulk modelling, sacrificing some raw throughput to container scale-out time.

On job completion, we send an event to the Job State Change’ Kinesis stream, which is picked up by the Lambda scheduler. The scheduler queries and updates the execution plan and submits further jobs that can now be run to the job stream.

We use Amazon Simple Storage Service (Amazon S3) as the primary storage service, creating a computational data lake, supplying input model parameters, exposures, loss and contract data files. Results from both portfolio rollup and deal analytics are written to S3 for downstream consumption by reporting and line-of-business systems.

Execution planner

The execution planner sits at the head of the process. We provide it with a set of deals to compute which could be as small as a single deal for a deal analytic, or up to seven thousand deals for a full portfolio rollup. There is a complex interdependency between deals. This means that the inputs to some deal computations require the results from previous deals to complete first. The first step in planning the execution is to build a directed acyclic graph (DAG) of deal dependencies (the deal DAG). Once the deal DAG has been constructed, the scheduler then computes an execution plan by walking the DAG.

We consult the execution plan throughout the run, in order to determine which jobs are available for execution. Execution begins with the set of jobs at the start of the chain, i.e., those that have no dependencies.

Job scheduling, caching and error handling

We give each job an execution priority during the planning phase. Typically, we assign a high priority to deal analytics and a lower priority to portfolio rollups.

We place standard priority jobs into an Amazon Simple Queue Service (Amazon SQS) queue for execution by a Fargate modelling container. During a full run, there will be up to 3,000 containers executing in parallel. High priority jobs are submitted to Lambda for execution which provides immediate scale on demand.

As each job completes, we write results to S3 and update the ‘job state change’ Kinesis Stream. The scheduler Lambda functions take input from the change stream and update the job state cache which is held in ElastiCache for Redis. This dynamically updates the overall execution plan for the run. As the run proceeds, the scheduler consults the execution plan to identify jobs that have satisfied their upstream dependencies. These jobs are submitted for execution.

Elasticache is also used to cache results. If a deal has been recently computed with the same input parameters, we use the cached result and update the execution plan – updated as if we had run the job.

Occasionally, failures will occur during job execution, like a Fargate container crash. This will cause an error event to be written to Amazon EventBridge. A handler function will log this error condition and then place an update into the job state stream. The job scheduler will resubmit the failed job for execution up to three times before marking the job as permanently failed. A run that has jobs that repeatedly fail to execute will cause the entire run to be halted and raise an alert condition.

Challenges we overcame

Applying a serverless technology stack to financial modelling has proven to be beneficial to the business, but there were several key challenges to be overcome along the way…

Read the full blog to learn more. Reminder: You can learn a lot from AWS HPC engineers by subscribing to the HPC Tech Short YouTube channel, and following the AWS HPC Blog channel.

Return to Solution Channel Homepage
Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Research senior analyst Steve Conway, who closely tracks HPC, AI, Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, and this day of contemplation is meant to provide all of us Read more…

Intel Announces Hala Point – World’s Largest Neuromorphic System for Sustainable AI

April 22, 2024

As we find ourselves on the brink of a technological revolution, the need for efficient and sustainable computing solutions has never been more critical.  A computer system that can mimic the way humans process and s Read more…

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Resear Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire