Accelerating Genomics Pipelines Using Intel’s Open Omics Acceleration Framework on AWS

By Amazon Web Services

September 5, 2022

This post was contributed by Sanchit Misra, PhD, Vasimuddin Md., PhD,  Saurabh Kalikar, PhD, and Narendra Chaudhary, PhD, research scientists at Intel Labs.

Introduction

We are in the epoch of digital biology, that is fueled by the convergence of three revolutions:

    • the measurement of biological systems at high resolution,
    • novel data science (AI and data management) techniques that can be applied on this data, and
    • widespread use of the massive public data repositories, large collaborative projects, and consortia, which in turn promote the use of cloud due to easy data access.

Genomics is a primary example of this trend, where high-throughput next-generation sequencing (NGS) devices are being used to sequence DNA, mRNA, regulatory regions, the gut microbiome, etc. Computational workflows are also being developed, standardized rapidly, and scaled by running on the cloud. With the enormous quantities of genomic data being collected, processing times are often in the order of billions of core hours, and the cost of processing increase commensurately. As a result, customers are looking for optimized tools and systems that incur the shortest runtimes and lowest costs.

Intel’s Open Omics Acceleration Framework (in short, Open Omics) is an open-sourced high throughput framework for accelerating omics pipelines. Intel is developing this framework with the following characteristics:

  • Community driven: Open Omics framework is being built based on extensive discussions with thought leaders in digital biology to understand the requirements of the user community. Moreover, Intel is building the framework with a modular design. This enables the developer community to use efficient modules to achieve faster performance for existing and new software tools in a productive manner.
  • Open-sourced: so that anyone can customize it for variations in use-cases.
  • Hardware accelerated: uses the underlying hardware efficiently to reduce cloud costs.
  • Supports full application stack: The application layer supports a wide range of applications in genomics, single cell analysis, and drug discovery. The middleware layer has scalable and efficient implementations of key building blocks, such as data management and key compute motifs. All of this is optimized for the processor, memory, storage, and networking.

In this blog, we showcase the first version of Open Omics and benchmark three applications that are used in processing NGS data – sequence alignment tools BWA-MEM, minimap2, and single cell ATAC-Seq on Xeon-based Amazon Elastic Compute Cloud (Amazon EC2) Instances.

Applications benchmarked for this blog

BWA-MEM and Minimap2 are popular software tools for aligning short reads and long reads to a reference sequence. The Open Omics version of BWA-MEM is called BWA-MEM2 and that of minimap2 is called mm2-fast. These are efficient architecture-aware implementations of original tools that were built in collaboration with Prof. Heng Li. They are both drop-in replacements that significantly reduce runtime and cloud costs while maintaining command line interface and output identical to original tools [2,3] and have been open sourced. Open Omics BWA-MEM has been used by more than 40 peer-reviewed genomics studies already, including research on Covid-19 [5,6], gut microbiome [7], and cancer [8].

ATAC-seq assays are used for identifying accessible chromatin regions in the DNA. ATACWorks [1] is a toolkit that is used to de-noise and identify accessible chromatin regions, and it uses deep learning on 1D data. The Open Omics version of ATACWorks builds an efficient 1D dilated convolution layer and demonstrates reduced precision (BFloat16) training to achieve significant performance gain without any loss of accuracy [4].

Benchmarking the Open Omics Acceleration framework on AWS

Amazon EC2 Instances used in this benchmarking

The four types of Amazon EC2 Instances used in this benchmarking study are detailed in the following table.

Table 1: Details of the Amazon EC2 instance types used for benchmarking. On-Demand and Spot pricing are from the publish date for the US-East (Virginia) Region, and is subject to change over time. Please consult the Amazon EC2 pricing page for current pricing in your region.  
Instance names On-Demand hourly rate Spot hourly rate Number of vCPUs Memory
c5.12xlarge $2.04 $0.4984 48 96 GiB
m5.12xlarge $2.304 $0.4933 48 192 GiB
c6i.16xlarge $2.72 $0.7602 64 128 GiB
m6i.16xlarge $3.072 $0.7406 64 256 GiB

Prerequisites

An AWS account with permissions to provision Amazon S3 buckets for input and output data storage, as well as sufficient permissions/limits to provision Amazon EC2 C5, M5, C6i, and M6i Instances.

How to benchmark Open Omics Acceleration Framework on AWS

The configuration details and steps used for benchmarking baseline and Open Omics versions of all three applications on EC2 Instances are detailed at IntelLab’s GitHub page. Typical process involves launching the corresponding EC2 Instances, connecting to the instances, installing the software, downloading the datasets, and executing the baseline and Open Omics versions. In the following subsections, we report results for the three applications on on-demand instances with dedicated tenancy. Compared to on-demand costs shown, the EC2 Spot Instances can provide nearly 75% cost savings.

Benchmarking Results: BWA-MEM

We used m5.12xlarge and m6i.16xlarge instances, with 48 and 64 threads (one thread per vCPU), respectively. The m-instance types were used because they provide 4 GB memory per vCPU that is required to run Open Omics BWA-MEM.

Figure 1 shows that on the same instance type (m5), Open Omics BWA-MEM achieves 1.8-2.3x speedup over the baseline BWA-MEM. Using the m6i instance type gives further performance gain, achieving 2.6-3.5x over baseline BWA-MEM on m5. The performance reported here of Open Omics BWA-MEM on m6i instance is ~1.7x faster than best performance on latest GPU. Please refer to this blog post and this video for a comparison.

The speedups are lower for ERR194147 dataset because it has reads of length ~100, providing less scope of parallelization. In comparison, the other two datasets that have reads of length ~150. A majority of the modern short read sequencers have read lengths ≥ 150 and they are expected to grow further. Therefore, we can expect higher speedups in the future.

Figure 1: Comparison of execution time of baseline BWA-MEM and Open Omics BWA-MEM on m5 and m6i instances for two different use cases – paired end and single end – for the three datasets used. The vertical bars show the execution time, while the line graph shows the speedup compared to baseline BWA-MEM on m5.

Figure 2 shows the price-performance chart for BWA-MEM. It demonstrates that Open Omics BWA-MEM achieves significant cost cuttings compared to baseline BWA-MEM. Moreover, the m6i instances not only provide faster performance compared to m5 instances, they also incur lower costs.

Figure 2: Comparison of On-Demand Instance costs per sample processed of baseline BWA-MEM and Open Omics BWA-MEM on m5 and m6i instances for two different use cases – paired end and single end – for the three datasets used.

Benchmarking Results: Minimap2

For this experiment, we used c5.12xlarge and c6i.16xlarge instances, using 48 and 64 threads (one thread per vCPU), respectively. Figure 3 shows that on the same instance type (c5), Open Omics minimap2 achieves 1.5-1.9x speedup over the baseline minimap2. Using the c6i instance type, gives further performance gain achieving 2-2.4x over baseline minimap2 on c5.

Figure 3: Comparison of execution time of baseline minimap2 and Open Omics minimap2 on c5 and c6i instances for mapping reads obtained from different sequencing technologies – Oxford Nanopore Technologies (ONT), Pacific Biosciences CLR (CLR), Pacific Biosciences HiFi (HiFi) – to the reference human genome. The vertical bars show the execution time, while the line graph shows the speedup compared to baseline minimap2 on c5.

The price-performance chart shown in Figure 4 clearly demonstrates that Open Omics minimap2 costs nearly the same on the c6i and c5 instances, while achieving significant cost savings over the baseline minimap2 running on c5.

Figure 4: Comparison of On-Demand Instance costs per sample of baseline minimap2 and Open Omics minimap2 on c5 and c6i instances for the three datasets used.

Benchmarking Results: ATAC-Seq data analysis

Figure 5 compares the execution time of the baseline and Open Omics versions of ATACWorks on c5 and c6i instances. The baseline version of ATACWorks is created by replacing the CUDA based deep learning modules with Intel® oneDNN library. Open Omics version uses Intel’s new optimized implementation of the 1D convolutions. The chart shows…

Read the full blog to learn more. Reminder: You can learn a lot from AWS HPC engineers by subscribing to the HPC Tech Short YouTube channel, and following the AWS HPC Blog channel.

 

Return to Solution Channel Homepage
Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, and this day of contemplation is meant to provide all of us Read more…

Intel Announces Hala Point – World’s Largest Neuromorphic System for Sustainable AI

April 22, 2024

As we find ourselves on the brink of a technological revolution, the need for efficient and sustainable computing solutions has never been more critical.  A computer system that can mimic the way humans process and s Read more…

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire