Best Practices for Running Computational Fluid Dynamics (CFD) Workloads on AWS

By Amazon Web Services

July 8, 2020

The scalable nature and variable demand of CFD workloads makes them well-suited for a cloud computing environment. Many of the AWS instance types, such as the compute family instance types, are designed to include support for this type of workload. AWS has network options that support extreme scalability and short turn-around time as necessary.

Fluid dynamics is the study of the motion of fluids, usually in the presence of an object. Typical fluid flows of interest to engineers and scientist include: flow in pipes, through engines, and around objects, such as buildings, automobiles, and airplanes. Computational fluid dynamics (CFD) is the study of these flows through computer simulation and modeling. CFD involves the solution of conservation equations (mass, momentum, energy, and others) in a finite domain.

A typical CFD simulation involves the following four steps.

  1. Define the Geometry

In some cases, this step is simple, such as modeling flow in a duct. In other cases, this step involves complex components and moving parts, such as modeling a gas turbine engine. For many cases, the geometry creation is extremely time-consuming. The geometry step is graphics intensive and requires a capable graphics workstation, preferably with a Graphics Processing Unit (GPU). Often, the geometry is provided by a designer, but the CFD engineer must “clean” the geometry for input into the flow solver.

  1. Generate the Mesh or Grid

Mesh generation is a critical step because computational accuracy is dependent on the size, cell location, and skewness of the cells. Mesh generation can be iterative with the solution, where fixes to the mesh are driven by an understanding of flow features and gradients in the solution. Meshing is frequently an interactive process and its elliptical nature generally requires a substantial amount of memory. Like geometry definition, generating a single mesh can take hours, days, weeks, and sometimes months.

  1. Solve for the solution

For some solutions, tens of thousands of cores (processors) run over weeks to achieve a solution. Conversely, some jobs may run in just minutes when scaled out appropriately. There are choices for model equations depending on the desired solution fidelity. The Navier-Stokes equations form the basis of the solved equations for most fluid calculations. The addition of chemical reactions, liquid and gas multi-phase flows, and many other physical properties create increasing complexity. For example, increasing the fidelity of turbulence modeling is achieved with various approximate equation sets such as Reynolds Average Navier-Stokes (RANS), Large Eddy Simulation (LES), Delayed Detached Eddy Simulation (DDES), and Direct Numerical Simulation (DNS). These models typically do not change the fundamental computational characteristics or scaling of the simulation.

  1. Post process through visualization

Examples of this step include the creation of images, video, and post processing of flow fields, such as creating total forces and moments. Similar to the geometry and mesh steps, this can be graphics and memory intensive CFD workloads that typically scale well on the cloud. Most codes rely on domain decomposition to distribute portions of the calculation to the compute nodes. A case can be run highly parallel to receive results in minutes, or large numbers of cases can run simultaneously as efficiently and cheaply as possible to allow the timely completion of all cases.

Why CFD on AWS?

AWS is a great place to run CFD cases. CFD workloads are typically MPI-based, tightly coupled workloads relying on a large number of cores across many nodes. Many of the AWS instance types, such as the compute family instance types, are designed to include support for this type of workload. AWS has network options that support extreme scalability and short turn-around time as necessary. Small CFD cases can be run on a single node, with a large number of cores, and do not require the use of multiple instances.

 

CFD workloads typically scale well on the cloud. Most codes rely on domain decomposition to distribute portions of the calculation to the compute nodes. A case can be run highly parallel to receive results in minutes, or large numbers of cases can run simultaneously as efficiently and cheaply as possible to allow the timely completion of all cases.

The cloud offers a quick way to deploy and turn around CFD w

orkloads at any scale without the need to own your own infrastructure. You can run jobs that once were in the realm of national labs or large industry. In just an hour or two, you can deploy CFD software, upload input files, launch compute nodes, and complete jobs on a large number of cores. When your job completes, results can be visualized and downloaded, and then all resources can be terminated – allowing you to only pay for what you use. If preferred, your results can be securely archived in cloud storage. Due to cloud scalability, you have the option to run multiple cases simultaneously with a dedicated cluster for each case.

The cloud accommodates the variable demand of CFD. Often, there is a need to run a large number of cases as quickly as possible. Situations can require a sudden burst of tens, to hundreds, to thousands of calculations immediately, and then perhaps noruns until the next cycle. The need to run a large number of cases could be for a preliminary design review, or perhaps a sweep of cases for the creation of a solution database. On the cloud, the cost is the same to run many jobs simultaneously, in parallel, as it is to run them serially, so you can get your data more quickly and at no extra cost. The cost savings in engineering time is an often forgotten part of cost analysis. Running in parallel can be an ideal solution for design optimization. On AWS, you can launch the cases you need when your case is ready, without waiting in a queue for available cluster resources.

Cloud computing is a strong choice for other CFD steps. You can easily launch a GPU instance, a high-memory instance, or a cluster of high-memory instances, to handle the geometry, meshing, and post-processing. With remote visualization software available to handle the display, you can manage the GPU instance running your post-processing visualization from any screen (laptop, desktop, web browser) as though you were working on a large workstation.

Read the full white paper to learn about best practices for running computational fluid dynamics (CFD) workloads on AWS and quick start tools.

Get started with running your CAE/CFD workloads now – fill the form and get a $100 AWS credit!

 

 

Return to Solution Channel Homepage
Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Q&A with Altair CEO James Scapa, an HPCwire Person to Watch in 2021

May 14, 2021

Chairman, CEO and co-founder of Altair James R. Scapa closed several acquisitions for the company in 2020, including the purchase and integration of Univa and Ellexus. Scapa founded Altair more than 35 years ago with two Read more…

HLRS HPC Helps to Model Muscle Movements

May 13, 2021

The growing scale of HPC is allowing simulation of more and more complex systems at greater detail than ever before, particularly in the biological research spheres. Now, researchers at the University of Stuttgart are le Read more…

Behind the Met Office’s Procurement of a Billion-Dollar Microsoft System

May 13, 2021

The UK’s national weather service, the Met Office, caused shockwaves of curiosity a few weeks ago when it formally announced that its forthcoming billion-dollar supercomputer – expected to be the most powerful weather and climate-focused supercomputer in the world when it launches in 2022... Read more…

AMD, GlobalFoundries Commit to $1.6 Billion Wafer Supply Deal

May 13, 2021

AMD plans to purchase $1.6 billion worth of wafers from GlobalFoundries in the 2022 to 2024 timeframe, the chipmaker revealed today (May 13) in an SEC filing. In the face of global semiconductor shortages and record-high demand, AMD is renegotiating its Wafer Supply Agreement and bumping up capacity. Read more…

Hyperion Offers Snapshot of Quantum Computing Market

May 13, 2021

The nascent quantum computer (QC) market will grow 27 percent annually (CAGR) reaching $830 million in 2024 according to an update provided today by analyst firm Hyperion Research at the HPC User Forum being held this we Read more…

AWS Solution Channel

Numerical weather prediction on AWS Graviton2

The Weather Research and Forecasting (WRF) model is a numerical weather prediction (NWP) system designed to serve both atmospheric research and operational forecasting needs. Read more…

Hyperion: HPC Server Market Ekes 1 Percent Gain in 2020, Storage Poised for ‘Tipping Point’

May 12, 2021

The HPC User Forum meeting taking place virtually this week (May 11-13) kicked off with Hyperion Research’s market update, covering the 2020 period. Although the HPC server market had been facing a 6.7 percent COVID-re Read more…

Behind the Met Office’s Procurement of a Billion-Dollar Microsoft System

May 13, 2021

The UK’s national weather service, the Met Office, caused shockwaves of curiosity a few weeks ago when it formally announced that its forthcoming billion-dollar supercomputer – expected to be the most powerful weather and climate-focused supercomputer in the world when it launches in 2022... Read more…

AMD, GlobalFoundries Commit to $1.6 Billion Wafer Supply Deal

May 13, 2021

AMD plans to purchase $1.6 billion worth of wafers from GlobalFoundries in the 2022 to 2024 timeframe, the chipmaker revealed today (May 13) in an SEC filing. In the face of global semiconductor shortages and record-high demand, AMD is renegotiating its Wafer Supply Agreement and bumping up capacity. Read more…

Hyperion Offers Snapshot of Quantum Computing Market

May 13, 2021

The nascent quantum computer (QC) market will grow 27 percent annually (CAGR) reaching $830 million in 2024 according to an update provided today by analyst fir Read more…

Hyperion: HPC Server Market Ekes 1 Percent Gain in 2020, Storage Poised for ‘Tipping Point’

May 12, 2021

The HPC User Forum meeting taking place virtually this week (May 11-13) kicked off with Hyperion Research’s market update, covering the 2020 period. Although Read more…

IBM Debuts Qiskit Runtime for Quantum Computing; Reports Dramatic Speed-up

May 11, 2021

In conjunction with its virtual Think event, IBM today introduced an enhanced Qiskit Runtime Software for quantum computing, which it says demonstrated 120x spe Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Fast Pass Through (Some of) the Quantum Landscape with ORNL’s Raphael Pooser

May 7, 2021

In a rather remarkable way, and despite the frequent hype, the behind-the-scenes work of developing quantum computing has dramatically accelerated in the past f Read more…

IBM Research Debuts 2nm Test Chip with 50 Billion Transistors

May 6, 2021

IBM Research today announced the successful prototyping of the world's first 2 nanometer chip, fabricated with silicon nanosheet technology on a standard 300mm Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers

Contributors

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

The History of Supercomputing vs. COVID-19

March 9, 2021

The COVID-19 pandemic poses a greater challenge to the high-performance computing community than any before. HPCwire's coverage of the supercomputing response t Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire