Challenging the barriers to High Performance Computing in the Cloud

By Bala Thekkedath, Global HPC Marketing Lead, AWS

January 7, 2020

Cloud computing helps democratize High Performance Computing by placing powerful computational capabilities in the hands of more researchers, engineers, and organizations who may lack access to sufficient on-premises infrastructure. The cloud’s flexibility and scalability offer virtually unlimited capacity, eliminating wait times and long job queues. Access to new and evolving services and applications make it easy to evolve and modernize workflows, like incorporating Artificial Intelligence (AI) with HPC. With HPC in the cloud, organizations only pay for the capacity they use, and there’s no risk of on-premises infrastructure becoming obsolete or poorly utilized. In addition, cloud-based services enable innovation without constraints by delivering faster results and improved flexibility. AWS gives organizations the power to create HPC clusters on demand, instead of waiting for equipment to be built—helping drive business insights and organization productivity.

Despite its advantages, some organizations remain hesitant to move their HPC workloads to the cloud, due to questions about cost, security and performance. With today’s clouds, these assertions are outdated and generally inaccurate. HPC on AWS, powered by Intel® Xeon® Scalable processors, offers the most elastic, scalable cloud infrastructure to run HPC applications, and the range of services makes it easier than ever to get started quickly, securely, and cost-effectively.

 

Cost and Cost Management

For many organizations, the cost of running HPC in the cloud is a major concern. In a recent market survey conducted by a third party for AWS, almost half (49%) of participants said cost and cost-management were barriers. When considering the cost of cloud-based HPC systems, organizations should note that in many cases a basic TCO analysis often does not tell the whole story. Demand for on-premises HPC resources often exceeds capacity and lost productivity due to an over utilized system has massive implications for organizations that place high value on the pace of innovation. Moving HPC workloads to the cloud also eliminate the need for periodic technology and infrastructure refresh cycles every three to five years, ensuring that innovation continues at a rapid pace

AWS delivers an integrated suite of services that provides everything needed to build and manage HPC clusters in the cloud, simply and cost-effectively. There are no upfront capital expenditures or lengthy procurement cycles, and the only cost is for capacity used. It offers flexible pricing models that provide significant cost savings for time-flexible, stateless workloads. AWS constantly delivers new services and features, like 2nd generation Intel Xeon Scalable processors with Intel® Deep Learning Boost (Intel DL Boost) to enable new capabilities, improved performance, and optimization for all current HPC frameworks. AWS offers cost management and analysis tools such as AWS Cost Explorer and AWS Budgets. Additionally, AWS partners like Ronin have built cost-control models on the platform.

 

Data Security and Data Governance

Concerns about cloud security are nothing new. Many industries that use HPC heavily have stringent security requirements, and it’s a commonly cited obstacle to cloud-based HPC solutions. 43% of participants in the HPC market survey had concerns about data security and governance, and 42% also listed data privacy. While some perceive security and privacy benefits to on-premises HPC, they don’t account for risk management issues like aging infrastructure that increase the security costs of maintaining compliance, or for expensive regulatory compliance and certifications often required for on-premises solutions. They may not sufficiently account for the complex landscape that security compliance has become and the benefits of a shared responsibility model where AWS helps relieve the customer’s operational burden by operating, managing and controlling the components from the host operating system and virtualization layer down to the physical security of the facilities in which the service operates.

Cloud security is a high priority at AWS and we offer several tools and services to ensure encryption, manage access, and secure regulated workloads. All data is stored in highly secure AWS data centers, and the network architecture is built to meet the requirements of the most risk-sensitive organizations. Additionally, customers maintain ownership and control of all content—they can select which AWS services can process, store and host content, determine where it will be stored, choose its secured state, and manage all access. When a customer uses AWS services, they operate in a shared responsibility environment, where the secure functioning of an application on AWS requires action from both the customer and AWS. All institutions should explain the shared responsibility model to their stakeholders throughout the design, development, testing, and production phases of cloud adoption. Customers are responsible for security IN the cloud. They control and manage the security of their content, applications, systems, and networks. AWS manages security OF the cloud to protect infrastructure and services, maintain operational performance, and meet relevant legal and regulatory requirements. Intel Xeon Scalable processor-based AWS instances deliver hardware-enabled security capabilities directly on the silicon to help protect every layer of the compute stack, including hardware, firmware, operating systems, applications, networks, and the cloud. Intel Threat Detection Technology (Intel TDT) is also available on 2nd Generation Intel Xeon Scalable processors and delivers hardware-enhanced threat detection.

 

Data Transfer

Running HPC applications in the cloud starts with moving the required data into the cloud, but this process can be an obstacle for many organizations. The market study found that 41% of those surveyed were concerned about getting data into—and out of—the cloud. Commonly cited data transfer barriers are time and money, but while it may seem easier in the long run to keep data in on-premises HPC infrastructure, the investment in moving data to the cloud is far outweighed by the benefits of more flexible, agile HPC. Moving data and HPC to the cloud improves efficiency by freeing up valuable financial and staff resources, and reduces business risks by storing data in a more resilient, secure environment. In addition, cloud-based HPC enables customers to utilize AI, machine learning and deep learning to mine all the data available from HPC simulations, narrowing the range of simulations required—meaning cheaper, faster HPC workload execution. Since newer, cloud-native HPC applications were designed to perform better on cloud-based elastic infrastructure, improved performance in the cloud can deliver better ROI.

 

Performance

Organizations using High Performance Computing expect high performance—and many still don’t believe the cloud can compete with on-premises data centers. 35% of participants in the market survey mentioned concerns about network performance and inter-connect latencies, and 29% mentioned broader performance concerns. But the belief that the networking speed between compute nodes in the cloud is not fast enough for high performance is outdated. Recent advancements have helped speed up cloud networking and trim latency to the point where all but the most resource-intensive HPC applications run just as well or better on the cloud than on on-premises infrastructure. AWS performance exceeds the needs of almost every HPC use-case in terms of scalability, elasticity and raw performance, and typically delivers better ROI. Elastic Fabric Adapter (EFA) – a network interface for Amazon EC2 instances offers a unique OS bypass networking mechanism to provides a low latency, low-jitter channel for inter-instance communications. This enables tightly coupled HPC or distributed machine learning applications to scale to thousands of cores, so applications run faster. For a standard CFD simulation, the use of EFA shows a 4x improvement in scaling over using the standard networking for EC2 instances.

In another performance benchmark exercise, Amazon EC2 C5n instances were compared to a mainstream HPC node from a leading on-premises HPC OEM running a standard CFD use case. Engineering simulation software provider ANSYS publishes ANSYS® Fluent® benchmarks of “External Flow Over a Formula-1 Race Car.” This case has around 140-million Hex-core cells and uses the realizable k-epsilon turbulence model as well as the Pressure-based coupled solver and the Least Squares cell-based, pseudo-transient solver. Running the same benchmark using Amazon EC2 C5n instances and Elastic Fabric Adapter is a simple way to benchmark the performance of the solver on AWS and compare it against traditional HPC infrastructure.

The plot below shows the rating of the on-premises OEM’s HPC node and C5n.18xlarge with EFA. ANSYS defines† this rating as “the primary metric used to report performance results of the Fluent Benchmarks. It is defined as the number of benchmarks that can be run on a given machine (in sequence) in a 24-hour period. It is computed by dividing the number of seconds in a day (86,400 seconds) by the number of seconds required to run the benchmark. A higher rating means better performance.”

The plot shows C5n.18xlarge with EFA got a higher rating up to 2400 cores and is essentially on par up to about 3800 cores.

  

Conclusion

HPC is an essential function for many industries, but misconceptions about cloud-based HPC may prevent organizations from realizing the benefits of these powerful systems—like quicker time to market, new business insights, unprecedented agility and scalability, and more. When comparing on-premises infrastructure to cloud-based HPC, it’s important to consider factors beyond a simple cost-per-core-hour analysis and look at the holistic business impact. Factors like personnel productivity, cutting-edge technology, and innovation acceleration are critical in the new digital economy—the difference between leading the industry or playing catch-up.

The ability to create customized compute clusters in the AWS cloud enables cost-effective HPC for most business cases, from small research teams to large enterprise organizations. And AWS offers a suite of integrated products and services that keep data private and secure, make it easy to migrate and transfer data, and deliver consistent high performance. Download the entire Whitepaper to learn more.

Return to Solution Channel Homepage
Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Q&A with Altair CEO James Scapa, an HPCwire Person to Watch in 2021

May 14, 2021

Chairman, CEO and co-founder of Altair James R. Scapa closed several acquisitions for the company in 2020, including the purchase and integration of Univa and Ellexus. Scapa founded Altair more than 35 years ago with two Read more…

HLRS HPC Helps to Model Muscle Movements

May 13, 2021

The growing scale of HPC is allowing simulation of more and more complex systems at greater detail than ever before, particularly in the biological research spheres. Now, researchers at the University of Stuttgart are le Read more…

Behind the Met Office’s Procurement of a Billion-Dollar Microsoft System

May 13, 2021

The UK’s national weather service, the Met Office, caused shockwaves of curiosity a few weeks ago when it formally announced that its forthcoming billion-dollar supercomputer – expected to be the most powerful weather and climate-focused supercomputer in the world when it launches in 2022... Read more…

AMD, GlobalFoundries Commit to $1.6 Billion Wafer Supply Deal

May 13, 2021

AMD plans to purchase $1.6 billion worth of wafers from GlobalFoundries in the 2022 to 2024 timeframe, the chipmaker revealed today (May 13) in an SEC filing. In the face of global semiconductor shortages and record-high demand, AMD is renegotiating its Wafer Supply Agreement and bumping up capacity. Read more…

Hyperion Offers Snapshot of Quantum Computing Market

May 13, 2021

The nascent quantum computer (QC) market will grow 27 percent annually (CAGR) reaching $830 million in 2024 according to an update provided today by analyst firm Hyperion Research at the HPC User Forum being held this we Read more…

AWS Solution Channel

Numerical weather prediction on AWS Graviton2

The Weather Research and Forecasting (WRF) model is a numerical weather prediction (NWP) system designed to serve both atmospheric research and operational forecasting needs. Read more…

Hyperion: HPC Server Market Ekes 1 Percent Gain in 2020, Storage Poised for ‘Tipping Point’

May 12, 2021

The HPC User Forum meeting taking place virtually this week (May 11-13) kicked off with Hyperion Research’s market update, covering the 2020 period. Although the HPC server market had been facing a 6.7 percent COVID-re Read more…

Behind the Met Office’s Procurement of a Billion-Dollar Microsoft System

May 13, 2021

The UK’s national weather service, the Met Office, caused shockwaves of curiosity a few weeks ago when it formally announced that its forthcoming billion-dollar supercomputer – expected to be the most powerful weather and climate-focused supercomputer in the world when it launches in 2022... Read more…

AMD, GlobalFoundries Commit to $1.6 Billion Wafer Supply Deal

May 13, 2021

AMD plans to purchase $1.6 billion worth of wafers from GlobalFoundries in the 2022 to 2024 timeframe, the chipmaker revealed today (May 13) in an SEC filing. In the face of global semiconductor shortages and record-high demand, AMD is renegotiating its Wafer Supply Agreement and bumping up capacity. Read more…

Hyperion Offers Snapshot of Quantum Computing Market

May 13, 2021

The nascent quantum computer (QC) market will grow 27 percent annually (CAGR) reaching $830 million in 2024 according to an update provided today by analyst fir Read more…

Hyperion: HPC Server Market Ekes 1 Percent Gain in 2020, Storage Poised for ‘Tipping Point’

May 12, 2021

The HPC User Forum meeting taking place virtually this week (May 11-13) kicked off with Hyperion Research’s market update, covering the 2020 period. Although Read more…

IBM Debuts Qiskit Runtime for Quantum Computing; Reports Dramatic Speed-up

May 11, 2021

In conjunction with its virtual Think event, IBM today introduced an enhanced Qiskit Runtime Software for quantum computing, which it says demonstrated 120x spe Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Fast Pass Through (Some of) the Quantum Landscape with ORNL’s Raphael Pooser

May 7, 2021

In a rather remarkable way, and despite the frequent hype, the behind-the-scenes work of developing quantum computing has dramatically accelerated in the past f Read more…

IBM Research Debuts 2nm Test Chip with 50 Billion Transistors

May 6, 2021

IBM Research today announced the successful prototyping of the world's first 2 nanometer chip, fabricated with silicon nanosheet technology on a standard 300mm Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers

Contributors

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

The History of Supercomputing vs. COVID-19

March 9, 2021

The COVID-19 pandemic poses a greater challenge to the high-performance computing community than any before. HPCwire's coverage of the supercomputing response t Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire