Challenging the barriers to High Performance Computing in the Cloud

By Bala Thekkedath, Global HPC Marketing Lead, AWS

January 7, 2020

Cloud computing helps democratize High Performance Computing by placing powerful computational capabilities in the hands of more researchers, engineers, and organizations who may lack access to sufficient on-premises infrastructure. The cloud’s flexibility and scalability offer virtually unlimited capacity, eliminating wait times and long job queues. Access to new and evolving services and applications make it easy to evolve and modernize workflows, like incorporating Artificial Intelligence (AI) with HPC. With HPC in the cloud, organizations only pay for the capacity they use, and there’s no risk of on-premises infrastructure becoming obsolete or poorly utilized. In addition, cloud-based services enable innovation without constraints by delivering faster results and improved flexibility. AWS gives organizations the power to create HPC clusters on demand, instead of waiting for equipment to be built—helping drive business insights and organization productivity.

Despite its advantages, some organizations remain hesitant to move their HPC workloads to the cloud, due to questions about cost, security and performance. With today’s clouds, these assertions are outdated and generally inaccurate. HPC on AWS, powered by Intel® Xeon® Scalable processors, offers the most elastic, scalable cloud infrastructure to run HPC applications, and the range of services makes it easier than ever to get started quickly, securely, and cost-effectively.

 

Cost and Cost Management

For many organizations, the cost of running HPC in the cloud is a major concern. In a recent market survey conducted by a third party for AWS, almost half (49%) of participants said cost and cost-management were barriers. When considering the cost of cloud-based HPC systems, organizations should note that in many cases a basic TCO analysis often does not tell the whole story. Demand for on-premises HPC resources often exceeds capacity and lost productivity due to an over utilized system has massive implications for organizations that place high value on the pace of innovation. Moving HPC workloads to the cloud also eliminate the need for periodic technology and infrastructure refresh cycles every three to five years, ensuring that innovation continues at a rapid pace

AWS delivers an integrated suite of services that provides everything needed to build and manage HPC clusters in the cloud, simply and cost-effectively. There are no upfront capital expenditures or lengthy procurement cycles, and the only cost is for capacity used. It offers flexible pricing models that provide significant cost savings for time-flexible, stateless workloads. AWS constantly delivers new services and features, like 2nd generation Intel Xeon Scalable processors with Intel® Deep Learning Boost (Intel DL Boost) to enable new capabilities, improved performance, and optimization for all current HPC frameworks. AWS offers cost management and analysis tools such as AWS Cost Explorer and AWS Budgets. Additionally, AWS partners like Ronin have built cost-control models on the platform.

 

Data Security and Data Governance

Concerns about cloud security are nothing new. Many industries that use HPC heavily have stringent security requirements, and it’s a commonly cited obstacle to cloud-based HPC solutions. 43% of participants in the HPC market survey had concerns about data security and governance, and 42% also listed data privacy. While some perceive security and privacy benefits to on-premises HPC, they don’t account for risk management issues like aging infrastructure that increase the security costs of maintaining compliance, or for expensive regulatory compliance and certifications often required for on-premises solutions. They may not sufficiently account for the complex landscape that security compliance has become and the benefits of a shared responsibility model where AWS helps relieve the customer’s operational burden by operating, managing and controlling the components from the host operating system and virtualization layer down to the physical security of the facilities in which the service operates.

Cloud security is a high priority at AWS and we offer several tools and services to ensure encryption, manage access, and secure regulated workloads. All data is stored in highly secure AWS data centers, and the network architecture is built to meet the requirements of the most risk-sensitive organizations. Additionally, customers maintain ownership and control of all content—they can select which AWS services can process, store and host content, determine where it will be stored, choose its secured state, and manage all access. When a customer uses AWS services, they operate in a shared responsibility environment, where the secure functioning of an application on AWS requires action from both the customer and AWS. All institutions should explain the shared responsibility model to their stakeholders throughout the design, development, testing, and production phases of cloud adoption. Customers are responsible for security IN the cloud. They control and manage the security of their content, applications, systems, and networks. AWS manages security OF the cloud to protect infrastructure and services, maintain operational performance, and meet relevant legal and regulatory requirements. Intel Xeon Scalable processor-based AWS instances deliver hardware-enabled security capabilities directly on the silicon to help protect every layer of the compute stack, including hardware, firmware, operating systems, applications, networks, and the cloud. Intel Threat Detection Technology (Intel TDT) is also available on 2nd Generation Intel Xeon Scalable processors and delivers hardware-enhanced threat detection.

 

Data Transfer

Running HPC applications in the cloud starts with moving the required data into the cloud, but this process can be an obstacle for many organizations. The market study found that 41% of those surveyed were concerned about getting data into—and out of—the cloud. Commonly cited data transfer barriers are time and money, but while it may seem easier in the long run to keep data in on-premises HPC infrastructure, the investment in moving data to the cloud is far outweighed by the benefits of more flexible, agile HPC. Moving data and HPC to the cloud improves efficiency by freeing up valuable financial and staff resources, and reduces business risks by storing data in a more resilient, secure environment. In addition, cloud-based HPC enables customers to utilize AI, machine learning and deep learning to mine all the data available from HPC simulations, narrowing the range of simulations required—meaning cheaper, faster HPC workload execution. Since newer, cloud-native HPC applications were designed to perform better on cloud-based elastic infrastructure, improved performance in the cloud can deliver better ROI.

 

Performance

Organizations using High Performance Computing expect high performance—and many still don’t believe the cloud can compete with on-premises data centers. 35% of participants in the market survey mentioned concerns about network performance and inter-connect latencies, and 29% mentioned broader performance concerns. But the belief that the networking speed between compute nodes in the cloud is not fast enough for high performance is outdated. Recent advancements have helped speed up cloud networking and trim latency to the point where all but the most resource-intensive HPC applications run just as well or better on the cloud than on on-premises infrastructure. AWS performance exceeds the needs of almost every HPC use-case in terms of scalability, elasticity and raw performance, and typically delivers better ROI. Elastic Fabric Adapter (EFA) – a network interface for Amazon EC2 instances offers a unique OS bypass networking mechanism to provides a low latency, low-jitter channel for inter-instance communications. This enables tightly coupled HPC or distributed machine learning applications to scale to thousands of cores, so applications run faster. For a standard CFD simulation, the use of EFA shows a 4x improvement in scaling over using the standard networking for EC2 instances.

In another performance benchmark exercise, Amazon EC2 C5n instances were compared to a mainstream HPC node from a leading on-premises HPC OEM running a standard CFD use case. Engineering simulation software provider ANSYS publishes ANSYS® Fluent® benchmarks of “External Flow Over a Formula-1 Race Car.” This case has around 140-million Hex-core cells and uses the realizable k-epsilon turbulence model as well as the Pressure-based coupled solver and the Least Squares cell-based, pseudo-transient solver. Running the same benchmark using Amazon EC2 C5n instances and Elastic Fabric Adapter is a simple way to benchmark the performance of the solver on AWS and compare it against traditional HPC infrastructure.

The plot below shows the rating of the on-premises OEM’s HPC node and C5n.18xlarge with EFA. ANSYS defines† this rating as “the primary metric used to report performance results of the Fluent Benchmarks. It is defined as the number of benchmarks that can be run on a given machine (in sequence) in a 24-hour period. It is computed by dividing the number of seconds in a day (86,400 seconds) by the number of seconds required to run the benchmark. A higher rating means better performance.”

The plot shows C5n.18xlarge with EFA got a higher rating up to 2400 cores and is essentially on par up to about 3800 cores.

  

Conclusion

HPC is an essential function for many industries, but misconceptions about cloud-based HPC may prevent organizations from realizing the benefits of these powerful systems—like quicker time to market, new business insights, unprecedented agility and scalability, and more. When comparing on-premises infrastructure to cloud-based HPC, it’s important to consider factors beyond a simple cost-per-core-hour analysis and look at the holistic business impact. Factors like personnel productivity, cutting-edge technology, and innovation acceleration are critical in the new digital economy—the difference between leading the industry or playing catch-up.

The ability to create customized compute clusters in the AWS cloud enables cost-effective HPC for most business cases, from small research teams to large enterprise organizations. And AWS offers a suite of integrated products and services that keep data private and secure, make it easy to migrate and transfer data, and deliver consistent high performance. Download the entire Whitepaper to learn more.

Return to Solution Channel Homepage

AWS Resources

Follow @awscloud

AWS on Facebook

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

The Present and Future of AI: A Discussion with HPC Visionary Dr. Eng Lim Goh

November 27, 2020

As HPE’s chief technology officer for artificial intelligence, Dr. Eng Lim Goh devotes much of his time talking and consulting with enterprise customers about how AI can benefit their business operations and products. Read more…

By Todd R. Weiss

SC20 Panel – OK, You Hate Storage Tiering. What’s Next Then?

November 25, 2020

Tiering in HPC storage has a bad rep. No one likes it. It complicates things and slows I/O. At least one storage technology newcomer – VAST Data – advocates dumping the whole idea. One large-scale user, NERSC storage architect Glenn Lockwood sort of agrees. The challenge, of course, is that tiering... Read more…

By John Russell

Exscalate4CoV Runs 70 Billion-Molecule Coronavirus Simulation

November 25, 2020

The winds of the pandemic are changing – for better and for worse. Three viable vaccines now teeter on the brink of regulatory approval, which will pave the way for broad distribution by April or May. But until then, COVID-19 cases are skyrocketing across the U.S. and Europe... Read more…

By Oliver Peckham

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman Institute for Advanced Science and Technology at the Universi Read more…

By Oliver Peckham

Gordon Bell Special Prize Goes to Massive SARS-CoV-2 Simulations

November 19, 2020

2020 has proven a harrowing year – but it has produced remarkable heroes. To that end, this year, the Association for Computing Machinery (ACM) introduced the Gordon Bell Special Prize for High Performance Computing-Ba Read more…

By Oliver Peckham

AWS Solution Channel

Introducing AWS ParallelCluster as an Intel Select Solution

High performance computing (HPC) system owners can spend weeks or months researching, procuring, and assembling components to build HPC clusters to run their workloads. Understanding and managing the complexities of compute, storage, networking, and software requirements can be confusing and time-consuming, slowing innovation and results. Read more…

Intel® HPC + AI Pavilion

Intel Keynote Address

Intel is the foundation of HPC – from the workstation to the cloud to the backbone of the Top500. At SC20, Intel’s Trish Damkroger, VP and GM of high performance computing, addresses the audience to show how Intel and its partners are building the future of HPC today, through hardware and software technologies that accelerate the broad deployment of advanced HPC systems. Read more…

Gordon Bell Prize Winner Breaks Ground in AI-Infused Ab Initio Simulation

November 19, 2020

The race to blend deep learning and first-principle simulation to speed up solutions and scale up problems tackled is one of the most exciting research areas in computational science today. This year’s ACM Gordon Bell Prize winner announced today at SC20 makes significant progress in that direction. Read more…

By John Russell

The Present and Future of AI: A Discussion with HPC Visionary Dr. Eng Lim Goh

November 27, 2020

As HPE’s chief technology officer for artificial intelligence, Dr. Eng Lim Goh devotes much of his time talking and consulting with enterprise customers about Read more…

By Todd R. Weiss

SC20 Panel – OK, You Hate Storage Tiering. What’s Next Then?

November 25, 2020

Tiering in HPC storage has a bad rep. No one likes it. It complicates things and slows I/O. At least one storage technology newcomer – VAST Data – advocates dumping the whole idea. One large-scale user, NERSC storage architect Glenn Lockwood sort of agrees. The challenge, of course, is that tiering... Read more…

By John Russell

Exscalate4CoV Runs 70 Billion-Molecule Coronavirus Simulation

November 25, 2020

The winds of the pandemic are changing – for better and for worse. Three viable vaccines now teeter on the brink of regulatory approval, which will pave the way for broad distribution by April or May. But until then, COVID-19 cases are skyrocketing across the U.S. and Europe... Read more…

By Oliver Peckham

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman I Read more…

By Oliver Peckham

Gordon Bell Special Prize Goes to Massive SARS-CoV-2 Simulations

November 19, 2020

2020 has proven a harrowing year – but it has produced remarkable heroes. To that end, this year, the Association for Computing Machinery (ACM) introduced the Read more…

By Oliver Peckham

Gordon Bell Prize Winner Breaks Ground in AI-Infused Ab Initio Simulation

November 19, 2020

The race to blend deep learning and first-principle simulation to speed up solutions and scale up problems tackled is one of the most exciting research areas in computational science today. This year’s ACM Gordon Bell Prize winner announced today at SC20 makes significant progress in that direction. Read more…

By John Russell

SC20 Keynote: Climate, Exascale & the Ultimate Answer

November 19, 2020

SC20’s keynote was delivered by renowned meteorologist and climatologist Bjorn Stevens, a director at the Max Planck Institute for Meteorology since 2008 and a professor at the University of Hamburg. In his keynote, Stevens traced the history of climate science from its earliest days through... Read more…

By Oliver Peckham

EuroHPC Exec. Dir. Talks Procurement, EPI, and Europe’s Efforts to Control its HPC Destiny

November 19, 2020

While much of the HPC community’s attention is fixed on SC20’s flood of news and new product announcements, Anders Dam Jensen, the newly-minted executive di Read more…

By Steve Conway

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

Supercomputer-Powered Research Uncovers Signs of ‘Bradykinin Storm’ That May Explain COVID-19 Symptoms

July 28, 2020

Doctors and medical researchers have struggled to pinpoint – let alone explain – the deluge of symptoms induced by COVID-19 infections in patients, and what Read more…

By Oliver Peckham

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman I Read more…

By Oliver Peckham

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for hi Read more…

By Tiffany Trader

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

NICS Unleashes ‘Kraken’ Supercomputer

April 4, 2008

A Cray XT4 supercomputer, dubbed Kraken, is scheduled to come online in mid-summer at the National Institute for Computational Sciences (NICS). The soon-to-be petascale system, and the resulting NICS organization, are the result of an NSF Track II award of $65 million to the University of Tennessee and its partners to provide next-generation supercomputing for the nation's science community. Read more…

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Leading Solution Providers

Contributors

Aurora’s Troubles Move Frontier into Pole Exascale Position

October 1, 2020

Intel’s 7nm node delay has raised questions about the status of the Aurora supercomputer that was scheduled to be stood up at Argonne National Laboratory next year. Aurora was in the running to be the United States’ first exascale supercomputer although it was on a contemporaneous timeline with... Read more…

By Tiffany Trader

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at c Read more…

By Oliver Peckham

At Oak Ridge, ‘End of Life’ Sometimes Isn’t

October 31, 2020

Sometimes, the old dog actually does go live on a farm. HPC systems are often cursed with short lifespans, as they are continually supplanted by the latest and Read more…

By Oliver Peckham

Texas A&M Announces Flagship ‘Grace’ Supercomputer

November 9, 2020

Texas A&M University has announced its next flagship system: Grace. The new supercomputer, named for legendary programming pioneer Grace Hopper, is replacing the Ada system (itself named for mathematician Ada Lovelace) as the primary workhorse for Texas A&M’s High Performance Research Computing (HPRC). Read more…

By Oliver Peckham

Top500: Fugaku Keeps Crown, Nvidia’s Selene Climbs to #5

November 16, 2020

With the publication of the 56th Top500 list today from SC20's virtual proceedings, Japan's Fugaku supercomputer – now fully deployed – notches another win, Read more…

By Tiffany Trader

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Microsoft Azure Adds A100 GPU Instances for ‘Supercomputer-Class AI’ in the Cloud

August 19, 2020

Microsoft Azure continues to infuse its cloud platform with HPC- and AI-directed technologies. Today the cloud services purveyor announced a new virtual machine Read more…

By Tiffany Trader

Nvidia-Arm Deal a Boon for RISC-V?

October 26, 2020

The $40 billion blockbuster acquisition deal that will bring chipmaker Arm into the Nvidia corporate family could provide a boost for the competing RISC-V architecture. As regulators in the U.S., China and the European Union begin scrutinizing the impact of the blockbuster deal on semiconductor industry competition and innovation, the deal has at the very least... Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This