Putting bitrates into perspective

By Amazon Web Services

October 27, 2021

Recently, we talked about the advances NICE DCV has made to push pixels from cloud-hosted desktops or applications over the internet even more efficiently than before. Since we published that post on this blog channel, we’ve been asked by several customers whether all this efficient pixel-pushing could lead to outbound data charges moving up on their AWS bill. These are the “data-out” fees you see on your bill each month. They’re metered on the data flowing out of the cloud across the internet, and are typically quite small, often falling into the free tier.

Usually, the best answer to any question you might have about the cloud is “just give it a try”, since the cost of experimentation is small. Since we heard this question from several customers in a short space of time, we decided to try it on your behalf, and share the details with you in this post. The bottom line? The charges are unlikely to be significant unless you’re doing the kind of intensive streaming that gamers do, and there are easier optimizations (like AWS Instance Savings Plans) that will have more impact.

Background

You might recall that – using a new transport called QUIC (RFC 9000) – DCV is able to mask even more of the effects of distance, so end-users running complex and graphically-intensive applications in the cloud feel like they’re just across campus from the data center. They don’t see “buffering” messages, and the video stream doesn’t stall when there’s ad hoc congestion on the internet somewhere.

The kinds of things that impact streaming performance vary. Latency, bandwidth, packet-rates, and reliability all factor into whether a user will notice that the connection between their desktop and the server is anything less than perfect. But these are network supply-side factors. The demand-side is about how many pixels we try to push down a connection of varying (and probably unpredictable) integrity. DCV works to optimize this equation by only moving pixels from parts of the screen that have changed and only retransmitting fragments of frames (caused by lost packets) when it’s necessary.

The combination of these kinds of optimizations are what let us continuously innovate ahead of voracious pixel-generating industries, like gaming or live streaming. You can reasonably expect to stream 4K gaming content up to 60 frames per second (FPS) over a decent domestic-grade internet connection to your house. In the broader scheme of things, this is amazing, and it relies on many technology advances in the last 20 years that far outstrip the growth in network bandwidth, which you might have assumed was the primary factor.

Predicting these in advance sometimes feels like guess work for many customers using the cloud for the first time. That’s because in a traditional, on-premises, environment you pay a single, up-front (and often quite large) fee to have an always-on internet connection for your whole data center. It costs you money, whether you’re using it or not, and you must know many months (or years) in advance how fat that pipe needs to be to satisfy all your users (and you probably never will). The cloud was built to reinvent all of that, and in doing so the mantra ‘pay only for what you use’ became the operating principle. If you’re wondering why we don’t have a data-in charge: it’s got a lot to do with the fact that data movement over the internet is an incredibly lop-sided equation. Just measuring data-out pretty much covers it.

Our setup

Given that DCV is used by a diverse set of customers, we needed to simulate several environments to make sure we weren’t misrepresenting anyone’s usage pattern. We settled on testing a range of screen resolutions from 1024×768 (Standard Definition, or SD), 1920×1080 (High Definition, or HD) and 3840×2160 (4K). The difference is around 5x the number of pixels. As you scale through that range, however, you’ll find that applications and GPU boards capable of pushing 4K are also likely running at greater framerates – including 60 FPS for the most intensive scenarios.

Those scenarios had to vary, too. Our starting point was a simple document-editing or slide-preparation session using Microsoft Office. Next, we simulated a CAD/CAE environment using Paraview to manipulate a complex 3D structure undergoing fluid dynamics analysis. Finally, we stressed everything (including our home broadband connections) by streaming 4K highly-animated content using content from YouTube, and some game benchmarks that’re widely used in the industry to punish GPUs (we used Heaven and Superposition in our tests).

The advantage of the game benchmark is that it simulates the kind of action frequently seen in a game environment –tens or hundreds of objects are moving at the same time in all directions in some thrilling moment of the adventure.

As a baseline, we ran all our tests on an Amazon EC2 g4dn.xlarge instance, which has a single NVIDIA T4 GPU, 4 vCPUs and 16 GB of RAM. Your choice of instance should match the intensity of the graphics performance you need in your application. It’ll also change if you’re sharing the GPU between multiple users or streams, which you can do with DCV. You might do this if you’re running a video streaming service rather than an engineering design company. You can see our results below and make your own judgements about how you depart from this baseline.

Read the full blog to see test results across a range of scenarios, resolutions and frame rates using NICE DCV.

Reminder: You can learn a lot from AWS HPC engineers by subscribing to the HPC Tech Short YouTube channel, and following the AWS HPC Blog channel.

 

Return to Solution Channel Homepage
Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Intel’s Silicon Brain System a Blueprint for Future AI Computing Architectures

April 24, 2024

Intel is releasing a whole arsenal of AI chips and systems hoping something will stick in the market. Its latest entry is a neuromorphic system called Hala Point. The system includes Intel's research chip called Loihi 2, Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Research senior analyst Steve Conway, who closely tracks HPC, AI, Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, and this day of contemplation is meant to provide all of us Read more…

Intel Announces Hala Point – World’s Largest Neuromorphic System for Sustainable AI

April 22, 2024

As we find ourselves on the brink of a technological revolution, the need for efficient and sustainable computing solutions has never been more critical.  A computer system that can mimic the way humans process and s Read more…

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

Intel’s Silicon Brain System a Blueprint for Future AI Computing Architectures

April 24, 2024

Intel is releasing a whole arsenal of AI chips and systems hoping something will stick in the market. Its latest entry is a neuromorphic system called Hala Poin Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Resear Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire