HPE and NASA Increasingly Transform HPC and Space Exploration with Spaceborne Computer

By Bill Mannel, VP & GM, HPC Segment Solutions and Apollo Servers, Data Center Infrastructure Group, Hewlett Packard Enterprise

April 11, 2018

Space exploration is one of the most exciting and multifaceted fields of research. From promoting scientific education and creating jobs, to expanding environmental studies and unraveling the mysteries of the universe, investigating the reaches of space holds the key to advancing human knowledge and human lives.

NASA is spearheading the effort “to pioneer the future in space exploration, scientific discovery, and aeronautics research.” To achieve this, NASA utilizes leading-edge technologies to collect, analyze, and transmit vast quantities of data and rapidly derive intelligent insights. High performance computing (HPC) capabilities are essential to executing these critical workloads, and last year, NASA teamed up with leading developer Hewlett Packard Enterprise (HPE) to launch the first HPC system into space.

HPE is working closely with NASA in a year-long experiment to deploy and operate a fully-functional HPC machine aboard the International Space Station (ISS). The mission—known as Spaceborne Computer—is designed to revolutionize space exploration, drive scientific and technological advancements, and accelerate innovation for the benefit of mankind. Spaceborne Computer was launched to the ISS on August 14th, 2017 and powered up one month later on September 14th. As of April 9th, the first supercomputer in space has been operating successfully for 207 days and orbiting for a total of 238 days—that’s 3,460 revolutions around the Earth. And the achievements don’t stop there.

Reaching new frontiers of innovation

Since becoming operational, Spaceborne Computer has consistently delivered one trillion calculations per second (or one teraflop of performance). This groundbreaking accomplishment earned HPE two esteemed awards at SuperComputing 2017, including the Hyperion Research “HPC Innovation Excellence Award” as well as the HPCwire Editors’ Choice Award for “Top Supercomputing Achievement.”

Since then, HPE and NASA have shared their progress at a number of HPC and academic events, kindling a growing intrigue in Spaceborne Computer. These activities range from talks with inquisitive fourth-grade classrooms and university aeronautical engineering clubs, to Dr. Eng Lim Goh’s session at HPE Discover Madrid, and the 2018 Mobile World Congress. Spaceborne Computer is fueling a new and undeniable passion for space research. In fact, one enthusiast shared his tattoo of the ISS with experts at the Spaceborne Computer area of an HPE event booth—and they photographed him and his ISS tattoo alongside the Spaceborne Computer system dashboard. The mission is even embracing the holiday spirit (as seen below), transforming the ISS emblem into Santa Claus with Rudolph the Red-Nosed Reindeer on Christmas Eve.

Source: HPE, December 2017

Then on Pi Day, an annual celebration of mathematics which takes place on March 14th, Spaceborne Computer completed its eight month in orbit and seventh successful month in operation. In honor of the holiday (and with NASA’s permission), the Spaceborne Computer team at HPE computed pi in space.

Source: HPE, March 2018

The team also ran a fresh Multi-Node High Performance LINPACK (HPL) to compare with the original benchmark results. This benchmark is typically used to stress-test a new system upon delivery before it goes into production. In this case, the new HPL results mirrored the original results from September 14th. The benchmark indicates a fundamental success for Spaceborne Computer, confirming over half a year of reliable HPC performance—from cores, to CPUs, to memory, to optical interconnect, to software—every component needed for scientific computation.

Spaceborne Computer has met and also exceeded the expectations of industry leaders as well as the hopes of NASA and HPE teams. As the software-hardened machine tackles expected and unexpected variables, the experiment proves to be a wild success:

  •      HPE’s software-hardening process meets NASA’s standards to protect the hardware from extreme temperatures, radiation, and other environmental factors.
  •      The machine successfully powers up in space and assumes standard operation.
  •      Spaceborne Computer passes endurance tests and continuously functions at one teraflop, like its twin system in Chippewa Falls.
  •      Over half a year later, the machine is still running mathematical computations rapidly and accurately.

In addition to these goals, Spaceborne Computer has adeptly handled scheduled and unscheduled interruptions—both due to electrical issues aboard the ISS. In one circumstance, a NASA inverter had failed—a component that converts solar panel direct current electricity into 110-volt AC used by the HPE system. Per safety protocol, NASA required the electricity to be turned off while the inverter was replaced. This “scheduled interrupt” allowed HPE to do an orderly shutdown of the machine, and once electricity was restored, the system went straight back into production. On a separate occasion, Spaceborne Computer encountered an “unscheduled interrupt” when a smoke detector sounded on the ISS, signaling an immediate shutdown to prevent a potential electrical fire. Spaceborne Computer had been up and running continuously until the system suddenly lost power. Although it was not prepared for the hard shutdown, HPE rebooted the system once the activity was determined a false alarm—and like clockwork, the machine logged on, ran health checks, and resumed normal production.

During the experiment, HPE received one warning email indicating the hardware was at risk of overheating. When the team went in to investigate, they found that the issue was not with Spaceborne Computer, but with its counterpart in Chippewa Falls. While maintenance was repairing the factory’s AC, the temperature increased, causing the software to alert HPE to an unsafe operating environment.

What’s next for supercomputing in space

After several months in operation, the HPE system is “running like a dream,” according to Project Lead Dr. Mark Fernandez. “Boring is good. Spaceborne is passing its space test with flying colors, and that’s vitally important because our mission is to operate seamlessly in the harsh conditions of space for one year—which is roughly the amount of time it will take to travel to Mars.”

Today, the HPE team is discussing the next steps for Spaceborne Computer. While some hardware engineers have suggested sending the hardware for standard failure analysis, others want to take an in-depth look at the system to explore how software can prevent these instances in the future. The key objectives are to expand the success of anticipatory failure modes in addition to making simple hardware modifications to enhance the reliability and performance of all HPC solutions, enabling HPE to create a new industry standard.

Moving forward, HPE and NASA hope to empower other space explorers with a new breed of compute at the intelligent edge. HPE hopes to expand its collaboration with NASA to drive innovation in three critical areas. Foremost, image and signal processing is an important area for exploration, allowing researchers to collect images and signals from space and process them on Earth. However, this is a time-consuming and bandwidth-intensive process. HPE is endeavoring to process this information onboard the ISS in order to transmit only relevant data to Earth, therefore saving valuable HPC resources and accelerating insight. Onboard artificial intelligence capabilities will allow spaceborne systems to quickly determine images of interest, bringing intelligence right to the edge to further man’s knowledge of space. Based on these insights, scientific engineers can drive precision improvements to the technologies required for entry, descent, and landing (EDL). These technologies enable scientists to study atmospheric pressure, weather patterns, and other factors that can pose major challenges to EDL procedures—this is especially critical when traveling places like Mars, 130 million miles away.

To learn more about how Spaceborne Computer is driving progress in scientific discovery and technological advancement, I invite you to visit me on Twitter at @Bill_Mannel. You can also visit @HPE_HPC for the latest developments in HPC innovation. And check out @NASA and @Space_Station for up-to-the-minute news and updates in space exploration.

Return to Solution Channel Homepage
Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Final Countdown to ISC19: What to See

June 13, 2019

If you're attending the International Supercomputing Conference, taking place in Frankfurt next week (June 16-20), you're either packing, in transit, or are already ensconced at the venue. In any case, you're busy, so he Read more…

By Tiffany Trader

The US Global Weather Forecast System Just Got a Major Upgrade

June 13, 2019

The United States’ Global Forecast System (GFS) has received a major upgrade to its modeling capabilities. The new dynamical core that has been added to the GFS – its first new dynamical core in nearly 40 years – w Read more…

By Oliver Peckham

NCSU Researchers Overcome Key DNA-Based Data Storage Obstacles

June 12, 2019

In the race for increasingly dense data storage solutions, DNA-based storage is surely one of the most curious – and a team of North Carolina State University (NCSU) researchers just brought it two steps closer to bein Read more…

By Oliver Peckham

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

For decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Transforming Dark Data for Insights and Discoveries in Healthcare

Healthcare in the USA produces an enormous amount of patient-related data each year. It is likely that the average person will generate over one million gigabytes of health-related data across his or her lifetime, equivalent to 300 million books. Read more…

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Final Countdown to ISC19: What to See

June 13, 2019

If you're attending the International Supercomputing Conference, taking place in Frankfurt next week (June 16-20), you're either packing, in transit, or are alr Read more…

By Tiffany Trader

The US Global Weather Forecast System Just Got a Major Upgrade

June 13, 2019

The United States’ Global Forecast System (GFS) has received a major upgrade to its modeling capabilities. The new dynamical core that has been added to the G Read more…

By Oliver Peckham

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

The Spaceborne Computer Returns to Earth, and HPE Eyes an AI-Protected Spaceborne 2

June 10, 2019

After 615 days on the International Space Station (ISS), HPE’s Spaceborne Computer has returned to Earth. The computer touched down onboard the same SpaceX Dr Read more…

By Oliver Peckham

Building the Team: South African Style

June 9, 2019

We’re only eight days away from the start of the ISC 2019 Student Cluster Competition. Fourteen student teams from eleven countries will travel to Frankfurt, Read more…

By Dan Olds

Scientists Solve Cosmic Mystery Through Black Hole Simulations

June 6, 2019

An international team of researchers has finally solved a long-standing cosmic mystery – and to do it, they needed to produce the most detailed black hole simulation ever created. Read more…

By Oliver Peckham

Quantum Upstart: IonQ Sets Sights on Challenging IBM, Rigetti, Others

June 5, 2019

Until now most of the buzz around quantum computing has been generated by folks already in the computer business – systems makers, chip makers, and big cloud Read more…

By John Russell

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Announcing four new HPC capabilities in Google Cloud Platform

April 15, 2019

When you’re running compute-bound or memory-bound applications for high performance computing or large, data-dependent machine learning training workloads on Read more…

By Wyatt Gorman, HPC Specialist, Google Cloud; Brad Calder, VP of Engineering, Google Cloud; Bart Sano, VP of Platforms, Google Cloud

Nvidia Claims 6000x Speed-Up for Stock Trading Backtest Benchmark

May 13, 2019

A stock trading backtesting algorithm used by hedge funds to simulate trading variants has received a massive, GPU-based performance boost, according to Nvidia, Read more…

By Doug Black

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

HPE to Acquire Cray for $1.3B

May 17, 2019

Venerable supercomputer pioneer Cray Inc. will be acquired by Hewlett Packard Enterprise for $1.3 billion under a definitive agreement announced this morning. T Read more…

By Doug Black & Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This