One Small Step Toward Mars: One Giant Leap for Supercomputing

By Staff Writer

October 10, 2018

Since the days of the Space Race between the U.S. and the former Soviet Union, we have continually sought ways to perform experiments in space. What we’ve lacked is a method for performing compute-intensive experiments in orbit without aid from the ground below – which is necessary in order to advance space exploration.

All that will change with the Spaceborne Computer experiment, a self-contained HPE supercomputer housed in a locker-like casing to be installed on the International Space Station (ISS) for a full year – roughly the same amount of time it will take humans to voyage to Mars.

We recently chatted with Dr. Eng Lim Goh, VP, Chief Technology Officer of SGI at Hewlett Packard Enterprise and principal investigator of this experiment, about the Spaceborne Computer, the challenges of supercomputing in space, and why this project represents an important step forward in the quest to set foot on Mars.

Tell me about the Spaceborne Computer. How did it get a ride on a SpaceX rocket to the International Space Station?

Dr. Goh: Customizing computers for space is a long process – these computers are multiple generations old by launch time, let alone after subsequent years of operational use. Meanwhile, I was working on the concept of giving Earth-based computers self-care intelligence so the company had started the patenting process for this. I then submitted a paper to NASA to conduct an orbital experiment of this concept. Through the dedication of our teams led by Dave Petersen and Dr. Mark Fernandez, we have the Spaceborne Computer today. Our goal is to achieve a functional supercomputer for spaceflight without spending years hardening systems by using off-the-shelf servers and custom-built software instead. We’ve had the honor of working closely with NASA for three decades, and it’s an added honor for us to partner on a project of this magnitude.

Why do we need a supercomputer in space?

Dr. Goh: We have always approached space exploration in steps. This launch represents the first step into the next frontier of space exploration – a mission to Mars.

Mars astronauts won’t have near-instant access to high performance computing like those in low-earth orbit do — on average, the red planet is 26 light minutes round-trip away. Imagine waiting that long to get critical answers during a system failure; that simply isn’t an option. Having a supercomputer on board the spacecraft will allow our interplanetary explorers to meet some of these challenges in real time — whether it be on-the-spot processing power for scalable simulation, analytics or artificial intelligence. But first we need to figure out how to make an off-the-shelf supercomputer function correctly in orbit. That’s what we aim to research through this year-long experiment.

Think about how we got to the moon. First there were the Mercury missions. Then Gemini. Then Apollo, and even at that stage it still took 11 missions before we landed Neil Armstrong and Buzz Aldrin on the lunar surface.

I like to think of the Spaceborne Computer project as the Mercury stage of the computer science research that will drive the mission to Mars. Earlier this year, my colleague, Kirk Bresniker discussed the computational challenges of the Mission to Mars and the need for a major architectural upgrade before we can realistically complete the journey, and Hewlett Packard Enterprise has the answer in Memory-Driven Computing.

Memory-Driven Computing will help us efficiently and effectively tackle the big data challenges of our day, and make it possible for us to—one day—send humans to Mars. But, even if we expect Memory-Driven Computing to become the standard for supercomputing in space we need to start somewhere.

Even the world’s fastest supercomputers are due for upgrades from time to time. How will you upgrade the Spaceborne Computer if it’s to be permanently based on the ISS?

Dr. Goh: We specifically decided not to turn the astronauts into systems engineers. The Spaceborne Computer is housed in an HPE-designed and NASA-approved locker that’s entirely self-contained and attached with NASA-approved bolts. Other than that, we include standard Ethernet cables, standard 110 volt AC connectors and NASA-approved water cooling technology for keeping the system from overheating. We literally use the chill of space to pull heat out of the Spaceborne Computer! Cool, right? Just as cool is the fact that our systems are totally powered by solar cells.

And because the package is self-contained and a single part number, we can put many types of compute in it that we, astronauts or scientists need. We can send a new locker up on a future mission and take the old one back. Nowhere in that process do we ask the astronauts to adjust or tune servers or otherwise become familiar with computer science.

What are the benefits to HPE and its customers?

The value of this project is two-fold. First is for our Earth-based customers. From NASA’s certification process we learned that HPE computers are already robust and reliable. Also, what we learn from this year-long experiment may also be applied across our product lines to benefit our customers.

Second is for our space bound customers. If this or a subsequent experiment produces successful results, they can carry with them and use the latest and most powerful off-the-shelf computers. In terms of market, it may not be that small if commercial space travel grew the same way air travel did.

What’s your dream for supercomputing in space? What’s the next step?

Dr. Goh: I have a dramatized vision of how we can increase our ability to conduct relevant, real-time experiments by orders of magnitude – by arming astronauts with portable, functional data centers on their missions. Imagine this: before her interplanetary mission, an astronaut calls up HPE and orders the latest high performance computer. It arrives pre-loaded with our custom software. She then loads her mission software, brings it aboard and launches with the latest highest performing computer system available. That is, instead of spending time customizing hardware, we just load customized software on off-the-shelf hardware. Imagine being able to Harden a computer with Software; it has somewhat of a poetic ring to it too.

Return to Solution Channel Homepage

HPE Resources

Follow @HPE_HPC

HPE on Facebook

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPC in Life Sciences Part 1: CPU Choices, Rise of Data Lakes, Networking Challenges, and More

February 21, 2019

For the past few years HPCwire and leaders of BioTeam, a research computing consultancy specializing in life sciences, have convened to examine the state of HPC (and now AI) use in life sciences. Without HPC writ large, modern life sciences research would quickly grind to a halt. It’s true most life sciences research computing... Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized silicon designs catered toward general-purpose cloud computing Read more…

By Tiffany Trader

The Internet of Criminal Things—Trust in the Gods but Verify!

February 20, 2019

“Are we under attack?” asked Professor Elmarie Biermann of the Cyber Security Institute during the recent South African Centre for High Performance Computing’s (CHPC) National Conference in Cape Town. A quick show Read more…

By Elizabeth Leake, STEM-Trek

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

The Perils of Becoming Trapped in the Cloud

Terms like ‘open systems’ have been bandied about for decades. While modern computer systems are relatively open compared to their predecessors, there are still plenty of opportunities to become locked into proprietary interfaces. Read more…

Machine Learning Takes Heat for Science’s Reproducibility Crisis

February 19, 2019

Scientists are raising red flags about the accuracy and reproducibility of conclusions drawn by machine learning frameworks. Among the remedies are developing new ML systems that can question their own predictions, show Read more…

By George Leopold

HPC in Life Sciences Part 1: CPU Choices, Rise of Data Lakes, Networking Challenges, and More

February 21, 2019

For the past few years HPCwire and leaders of BioTeam, a research computing consultancy specializing in life sciences, have convened to examine the state of HPC (and now AI) use in life sciences. Without HPC writ large, modern life sciences research would quickly grind to a halt. It’s true most life sciences research computing... Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Insights from Optimized Codes on Cineca’s Marconi

February 15, 2019

What can you do with 381,392 CPU cores? For Cineca, it means enabling computational scientists to expand a large part of the world’s body of knowledge from the nanoscale to the astronomic, from calculating quantum effects in new materials to supporting bioinformatics for advanced healthcare research to screening millions of possible chemical combinations to attack a deadly virus. Read more…

By Ken Strandberg

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

UC Berkeley Paper Heralds Rise of Serverless Computing in the Cloud – Do You Agree?

February 13, 2019

Almost exactly ten years to the day from publishing of their widely-read, seminal paper on cloud computing, UC Berkeley researchers have issued another ambitious examination of cloud computing - Cloud Programming Simplified: A Berkeley View on Serverless Computing. The new work heralds the rise of ‘serverless computing’ as the next dominant phase of cloud computing. Read more…

By John Russell

Iowa ‘Grows Its Own’ to Fill the HPC Workforce Pipeline

February 13, 2019

The global workforce that supports advanced computing, scientific software and high-speed research networks is relatively small when you stop to consider the magnitude of the transformative discoveries it empowers. Technical conferences provide a forum where specialists convene to learn about the latest innovations and schedule face-time with colleagues from other institutions. Read more…

By Elizabeth Leake, STEM-Trek

Trump Signs Executive Order Launching U.S. AI Initiative

February 11, 2019

U.S. President Donald Trump issued an Executive Order (EO) today launching a U.S Artificial Intelligence Initiative. The new initiative - Maintaining American L Read more…

By John Russell

Celebrating Women in Science: Meet Four Women Leading the Way in HPC

February 11, 2019

One only needs to look around at virtually any CS/tech conference to realize that women are underrepresented, and that holds true of HPC. SC hosts over 13,000 H Read more…

By AJ Lauer

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This