One Small Step Toward Mars: One Giant Leap for Supercomputing

By Staff Writer

October 10, 2018

Since the days of the Space Race between the U.S. and the former Soviet Union, we have continually sought ways to perform experiments in space. What we’ve lacked is a method for performing compute-intensive experiments in orbit without aid from the ground below – which is necessary in order to advance space exploration.

All that will change with the Spaceborne Computer experiment, a self-contained HPE supercomputer housed in a locker-like casing to be installed on the International Space Station (ISS) for a full year – roughly the same amount of time it will take humans to voyage to Mars.

We recently chatted with Dr. Eng Lim Goh, VP, Chief Technology Officer of SGI at Hewlett Packard Enterprise and principal investigator of this experiment, about the Spaceborne Computer, the challenges of supercomputing in space, and why this project represents an important step forward in the quest to set foot on Mars.

Tell me about the Spaceborne Computer. How did it get a ride on a SpaceX rocket to the International Space Station?

Dr. Goh: Customizing computers for space is a long process – these computers are multiple generations old by launch time, let alone after subsequent years of operational use. Meanwhile, I was working on the concept of giving Earth-based computers self-care intelligence so the company had started the patenting process for this. I then submitted a paper to NASA to conduct an orbital experiment of this concept. Through the dedication of our teams led by Dave Petersen and Dr. Mark Fernandez, we have the Spaceborne Computer today. Our goal is to achieve a functional supercomputer for spaceflight without spending years hardening systems by using off-the-shelf servers and custom-built software instead. We’ve had the honor of working closely with NASA for three decades, and it’s an added honor for us to partner on a project of this magnitude.

Why do we need a supercomputer in space?

Dr. Goh: We have always approached space exploration in steps. This launch represents the first step into the next frontier of space exploration – a mission to Mars.

Mars astronauts won’t have near-instant access to high performance computing like those in low-earth orbit do — on average, the red planet is 26 light minutes round-trip away. Imagine waiting that long to get critical answers during a system failure; that simply isn’t an option. Having a supercomputer on board the spacecraft will allow our interplanetary explorers to meet some of these challenges in real time — whether it be on-the-spot processing power for scalable simulation, analytics or artificial intelligence. But first we need to figure out how to make an off-the-shelf supercomputer function correctly in orbit. That’s what we aim to research through this year-long experiment.

Think about how we got to the moon. First there were the Mercury missions. Then Gemini. Then Apollo, and even at that stage it still took 11 missions before we landed Neil Armstrong and Buzz Aldrin on the lunar surface.

I like to think of the Spaceborne Computer project as the Mercury stage of the computer science research that will drive the mission to Mars. Earlier this year, my colleague, Kirk Bresniker discussed the computational challenges of the Mission to Mars and the need for a major architectural upgrade before we can realistically complete the journey, and Hewlett Packard Enterprise has the answer in Memory-Driven Computing.

Memory-Driven Computing will help us efficiently and effectively tackle the big data challenges of our day, and make it possible for us to—one day—send humans to Mars. But, even if we expect Memory-Driven Computing to become the standard for supercomputing in space we need to start somewhere.

Even the world’s fastest supercomputers are due for upgrades from time to time. How will you upgrade the Spaceborne Computer if it’s to be permanently based on the ISS?

Dr. Goh: We specifically decided not to turn the astronauts into systems engineers. The Spaceborne Computer is housed in an HPE-designed and NASA-approved locker that’s entirely self-contained and attached with NASA-approved bolts. Other than that, we include standard Ethernet cables, standard 110 volt AC connectors and NASA-approved water cooling technology for keeping the system from overheating. We literally use the chill of space to pull heat out of the Spaceborne Computer! Cool, right? Just as cool is the fact that our systems are totally powered by solar cells.

And because the package is self-contained and a single part number, we can put many types of compute in it that we, astronauts or scientists need. We can send a new locker up on a future mission and take the old one back. Nowhere in that process do we ask the astronauts to adjust or tune servers or otherwise become familiar with computer science.

What are the benefits to HPE and its customers?

The value of this project is two-fold. First is for our Earth-based customers. From NASA’s certification process we learned that HPE computers are already robust and reliable. Also, what we learn from this year-long experiment may also be applied across our product lines to benefit our customers.

Second is for our space bound customers. If this or a subsequent experiment produces successful results, they can carry with them and use the latest and most powerful off-the-shelf computers. In terms of market, it may not be that small if commercial space travel grew the same way air travel did.

What’s your dream for supercomputing in space? What’s the next step?

Dr. Goh: I have a dramatized vision of how we can increase our ability to conduct relevant, real-time experiments by orders of magnitude – by arming astronauts with portable, functional data centers on their missions. Imagine this: before her interplanetary mission, an astronaut calls up HPE and orders the latest high performance computer. It arrives pre-loaded with our custom software. She then loads her mission software, brings it aboard and launches with the latest highest performing computer system available. That is, instead of spending time customizing hardware, we just load customized software on off-the-shelf hardware. Imagine being able to Harden a computer with Software; it has somewhat of a poetic ring to it too.

Return to Solution Channel Homepage

HPE Resources

Follow @HPE_HPC

HPE on Facebook

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Neural Network ‘Synapse’ Technology Showcased at IEEE Meeting

December 12, 2018

There’s nice snapshot of advancing work to develop improved neural network “synapse” technologies posted yesterday on IEEE Spectrum. Lower power, ease of use, manufacturability, and performance are all key paramete Read more…

By John Russell

Is Amazon’s Plunge into Server Chips a Watershed Moment?

December 11, 2018

For several years now the big cloud providers – Amazon, Microsoft Azure, Google, et al – have been transforming from technology consumers into technology creators in hardware and software. The most recent example bei Read more…

By John Russell

Mellanox Uses Univa to Extend Silicon Design HPC Operation to Azure

December 11, 2018

Call it a corollary to Murphy’s Law: When a system is most in demand, when end users are most dependent on the system performing as required, when it’s crunch time – that’s when the system is most likely to blow up. Or make you wait in line to use it. Read more…

By Doug Black

HPE Extreme Performance Solutions

AI Can Be Scary. But Choosing the Wrong Partners Can Be Mortifying!

As you continue to dive deeper into AI, you will discover it is more than just deep learning. AI is an extremely complex set of machine learning, deep learning, reinforcement, and analytics algorithms with varying compute, storage, memory, and communications needs. Read more…

IBM Accelerated Insights

Blurring the Lines Between HPC and AI @ SC18

The dominant topic at SC18 was the convergence of HPC and Artificial Intelligence (AI) with some of the biggest research and enterprise HPC users providing perspectives on how HPC and AI are moving closer together. Read more…

Clemson’s Cautionary Cryptomining Tale

December 11, 2018

In some ways, the bigger the computer, the more vulnerable it is to cryptomining as Clemson University discovered after cryptominers dug into its Palmetto supercomputer. When a number of nodes on Clemson University’s P Read more…

By Staff

Topology Can Help Us Find Patterns in Weather

December 6, 2018

Topology--–the study of shapes-- seems to be all the rage. You could even say that data has shape, and shape matters. Shapes are comfortable and familiar conc Read more…

By James Reinders

Zettascale by 2035? China Thinks So

December 6, 2018

Exascale machines (of at least a 1 exaflops peak) are anticipated to arrive by around 2020, a few years behind original predictions; and given extreme-scale performance challenges are not getting any easier, it makes sense that researchers are already looking ahead to the next big 1,000x performance goal post: zettascale computing. Read more…

By Tiffany Trader

Robust Quantum Computers Still a Decade Away, Says Nat’l Academies Report

December 5, 2018

The National Academies of Science, Engineering, and Medicine yesterday released a report – Quantum Computing: Progress and Prospects – whose optimism about Read more…

By John Russell

Revisiting the 2008 Exascale Computing Study at SC18

November 29, 2018

A report published a decade ago conveyed the results of a study aimed at determining if it were possible to achieve 1000X the computational power of the the Read more…

By Scott Gibson

AWS Debuts Lustre as a Service, Accelerates Data Transfer

November 28, 2018

From the Amazon re:Invent main stage in Las Vegas today, Amazon Web Services CEO Andy Jassy introduced Amazon FSx for Lustre, citing a growing body of applicati Read more…

By Tiffany Trader

AWS Launches First Arm Cloud Instances

November 28, 2018

AWS, a macrocosm of the emerging high-performance technology landscape, wants to be everywhere you want to be and offer everything you want to use (or at least Read more…

By Doug Black

Move Over Lustre & Spectrum Scale – Here Comes BeeGFS?

November 26, 2018

Is BeeGFS – the parallel file system with European roots – on a path to compete with Lustre and Spectrum Scale worldwide in HPC environments? Frank Herold Read more…

By John Russell

DOE Under Secretary for Science Paul Dabbar Interviewed at SC18

November 21, 2018

During the 30th annual SC conference in Dallas last week, SC18 hosted U.S. Department of Energy Under Secretary for Science Paul M. Dabbar. In attendance Nov. 13-14, Dabbar delivered remarks at the Top500 panel, met with a number of industry stakeholders and toured the show floor. He also met with HPCwire for an interview, where we discussed the role of the DOE in advancing leadership computing. Read more…

By Tiffany Trader

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

Google Releases Machine Learning “What-If” Analysis Tool

September 12, 2018

Training machine learning models has long been time-consuming process. Yesterday, Google released a “What-If Tool” for probing how data point changes affect a model’s prediction. The new tool is being launched as a new feature of the open source TensorBoard web application... Read more…

By John Russell

The Convergence of Big Data and Extreme-Scale HPC

August 31, 2018

As we are heading towards extreme-scale HPC coupled with data intensive analytics like machine learning, the necessary integration of big data and HPC is a curr Read more…

By Rob Farber

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This