How Digital Twins of the Human Body Can Advance Healthcare

By Dr. Eng Lim Goh

October 1, 2018

One of the most exciting aspects of supercomputing, for me, is when we step in the world of research and take on some of the great challenges of the ages. Over recent years, advances in high performance computing (HPC) technology have shortened the time between hypothesis and insight for researchers. And now we have a new challenge on which to concentrate our brain and computational power—as we try to power the simulation of digital brains.

Hewlett Packard Enterprise helps the EPFL Blue Brain Project (BBP) to advance the understanding of the brain by supplying the supercomputing power they require to digitally reconstruct and simulate the mammalian brain. Over the last few years, HPE has taken on a number of complex and seemingly impossible challenges: we’ve pioneered Memory-Driven Computing and designed computers to assist inter-planetary missions and take people into the farthest reaches of space—as well as reaching back in time and space, in collaboration with the COSMOS group, to study the beginnings of our universe.

However, reaching inside ourselves and studying the brain is perhaps even more challenging than taking on the galaxies.

The human brain is one of the most complex phenomena in the universe, and its digital reconstruction requires next-generation supercomputers and deep collaboration between brain researchers and computer engineers.  As our president and CEO, Antonio Neri, said: “Our mission is to create technologies that improve our quality of life, including powering technologies for the healthcare industry to deliver targeted treatments and save lives, HPE is bringing advanced supercomputing and bespoke applications to empower new research that can have transformative benefits for the neuroscientific community and society at large.”

The Blue Brain Project (BBP) aims to build comprehensive digital models of the brain, which will provide the basis for a potentially unlimited range of simulations, each representing an in-silico experiment. These digital experiments will not only require huge computing power, but also a range of very different computing profiles to support models of the brain’s different levels of organization and their interactions, as well as different types of modelling and simulation methodologies.

As soon as Antonio received a request from our Swiss team to work with BBP, he recognized the importance of this as an extension of our global partnerships to model and understand the human body. He asked me to go to Geneva and, only three days after the initial request, I was lucky enough to be sitting with the BBP team co-designing the system with them. It is particularly exciting as the BBP’s challenge to study the mammalian brain dovetails nicely with two existing projects we are working on:

  • The Living Heart, a collaboration between HPE and Stanford University to create multi-scale 3D models of the heart to monitor circulation and to virtually test medications in development and ultimately predict drug-induced arrhythmias, even if the patient is on the other side of the world.
  • DZNE is studying a population of 30,000 people over 30 years to find answers for brain diseases like Alzheimer’s, leveraging an HPE supercomputer with Memory-Driven Computing properties to improve the lives of the 1B people around the world living with neurological disorders.

As we are tackling with DZNE, populations around the world are aging, and brain diseases such as dementia and Alzheimer’s are becoming more prevalent. In fact, DZNE studies show that fighting dementia currently costs $1 trillion per year. Understanding the brain and coming up with cures and innovations that will help ease the burden on health providers—while providing people with a better quality of life—is becoming more and more important. And brain-related illnesses are not the only problem. By 2025, 1.2 billion people on Earth will be elderly. According to the World Health Organization, by 2020 chronic diseases such as cancer and diabetes will account for almost three quarters of deaths worldwide.

Until now, the viable option for testing medical hypotheses has been by testing on animals or humans. This has risks and can raise ethical questions; however, it is also more expensive, slower and less accurate than if we can create computer models that can simulate human body functions. It may seem impossible to switch entirely to computer testing, but only a few years ago people would never have imagined getting on board an aircraft that had been completely designed and simulated on a computer. Nowadays, the first aircraft that comes off the production line is the final design, not a prototype, because we have advanced our testing capabilities to the point where we are able to learn as much, if not more, in the computer model than we would from traditional processes. I firmly believe that something similar can be achieved through our work with organizations such as BBP and the Living Heart—we may eventually be able to construct digital models that are more effective than any human or animal tests.

Taking it forwards, we can hope to create “digital twins” of organs like the heart, or even of single cells, for individual patients. Simulations can then be run to find out how different people would react to different treatments. At that point, we will have taken the massive step from, generalized, traditional and sometimes even inaccurate research to the provision of truly personalized medical care with models that can be run at low cost and almost in real time to aid diagnosis and treatment plans. This will augment the advances that we have already made in precision medicine, as HPE is helping doctors to stop thinking of the “average patient” and helping them treat the “actual patient.”

Of course, such incredible ambition needs a quite incredible computer. Modelling an individual neuron at BBP today leads to around 20,000 ordinary differential equations. When modelling entire brain regions, this quickly rises to 100 billion equations that have to be solved concurrently. To provide the massive amount of computing power that will be necessary, BBP will be installing an HPE SGI 8600 supercomputer system in Lugano, Switzerland, and will make use of a cluster comprising 372 compute nodes. The HPE SGI 8600 is a sixth-generation system designed to solve the world’s most complex problems in areas ranging from life, earth, and space sciences, to engineering, manufacturing and national security—meaning that it was specially created for applications like BBP in which the power of big data and AI is harnessed to further our human understanding of the world we live in.

Endeavors like our collaboration with BBP bring a lot of hope for the future. There are great advances in areas like medicine thanks to big data, AI and super-computing, but there are also gaps that are slowing enhancement down—such as the need to digitize more patient records and get the data into a format that can be used. Projects such as this one show that we are pushing past the limitations and using data to accomplish feats that once seemed impossible. If we can do that, then the possible will follow in good time. It is something I am very proud to be a part of.

HPE Resources

Follow @HPE_HPC

HPE on Facebook

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

South Africa CHPC: Home Grown Dynasty

October 22, 2018

Before the build up to the final event in the 2018 Student Cluster Competition season (the SC18 competition in Dallas), I want to take a moment to write about one of the great inspirational stories of these competitions. Read more…

By Dan Olds

NSF Launches Quantum Computing Faculty Fellows Program

October 22, 2018

Efforts to expand quantum computing research capacity continue to accelerate. The National Science Foundation today announced a Quantum Computing & Information Science Faculty Fellows (QCIS-FF) program aimed at devel Read more…

By John Russell

Democratization of HPC Part 3: Ninth Graders Tap HPC in the Cloud to Design Flying Boats

October 18, 2018

This is the third in a series of articles demonstrating the growing acceptance of high-performance computing (HPC) in new user communities and application areas. In this article we present UberCloud use case #208 on how Read more…

By Wolfgang Gentzsch and Håkon Bull Hove

HPE Extreme Performance Solutions

One Small Step Toward Mars: One Giant Leap for Supercomputing

Since the days of the Space Race between the U.S. and the former Soviet Union, we have continually sought ways to perform experiments in space. Read more…

IBM Accelerated Insights

Join IBM at SC18 and Learn to Harness the Next Generation of AI-focused Supercomputing

Blurring the lines between HPC and AI

Today’s high performance computers are helping clients gain insights at an unprecedented pace. The intersection of artificial intelligence (AI) and HPC can transform industries while solving some of the world’s toughest challenges. Read more…

Penguin Computing Launches Consultancy for Piecing AI Strategies Together

October 18, 2018

AI stands before the HPC industry as a beacon of great expectations, yet market research repeatedly shows that AI adoption is commonly stuck in the talking phase, on the near side of a difficult chasm to cross. In respon Read more…

By Tiffany Trader

South Africa CHPC: Home Grown Dynasty

October 22, 2018

Before the build up to the final event in the 2018 Student Cluster Competition season (the SC18 competition in Dallas), I want to take a moment to write about o Read more…

By Dan Olds

Penguin Computing Launches Consultancy for Piecing AI Strategies Together

October 18, 2018

AI stands before the HPC industry as a beacon of great expectations, yet market research repeatedly shows that AI adoption is commonly stuck in the talking phas Read more…

By Tiffany Trader

When Water Quality—Not Quantity—Hinders HPC Cooling

October 18, 2018

Attention has been paid to the sheer quantity of water consumed by supercomputers’ cooling towers – and rightly so, as they can require thousands of gallons per minute to cool. But in the background, another factor can emerge, bottlenecking efficiency and raising costs: water quality. Read more…

By Oliver Peckham

Paper Offers ‘Proof’ of Quantum Advantage on Some Problems

October 18, 2018

Is quantum computing worth all the effort being poured into it or should we just wait for classical computing to catch up? An IBM blog today posed those questio Read more…

By John Russell

Dell EMC to Supply U Michigan’s Great Lakes Cluster

October 16, 2018

The University of Michigan (U-M) today announced Dell EMC is the lead vendor for U-M’s $4.8 million Great Lakes HPC cluster scheduled for deployment in first Read more…

By John Russell

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

Nvidia Platform Pushes GPUs into Machine Learning, High Performance Data Analytics

October 10, 2018

GPU leader Nvidia, generally associated with deep learning, autonomous vehicles and other higher-end enterprise and scientific workloads (and gaming, of course) Read more…

By Doug Black

Federal Investment in Exascale – What It Really Means

October 10, 2018

Earlier this month, the EuroHPC JU (Joint Undertaking) reached critical mass, and it seems all EU and affiliated member states, bar the UK (unsurprisingly), have or will sign on. The EuroHPC JU was born from a recognition that individual EU member states, and the EU as a whole, were significantly underinvesting in HPC compared to the US, China and Japan, who all have their own exascale investment and delivery strategies (NSCI, 13th 5 Year Plan, Post-K, etc). Read more…

By Dairsie Latimer

TACC Wins Next NSF-funded Major Supercomputer

July 30, 2018

The Texas Advanced Computing Center (TACC) has won the next NSF-funded big supercomputer beating out rivals including the National Center for Supercomputing Ap Read more…

By John Russell

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

Requiem for a Phi: Knights Landing Discontinued

July 25, 2018

On Monday, Intel made public its end of life strategy for the Knights Landing "KNL" Phi product set. The announcement makes official what has already been wide Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

Leading Solution Providers

HPC on Wall Street 2018 Booth Video Tours Playlist

Arista

Dell EMC

IBM

Intel

RStor

VMWare

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

GPUs Power Five of World’s Top Seven Supercomputers

June 25, 2018

The top 10 echelon of the newly minted Top500 list boasts three powerful new systems with one common engine: the Nvidia Volta V100 general-purpose graphics proc Read more…

By Tiffany Trader

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

Aerodynamic Simulation Reveals Best Position in a Peloton of Cyclists

July 5, 2018

Eindhoven University of Technology (TU/e) and KU Leuven research group conducts the largest numerical simulation ever done in the sport industry and cycling discipline. The goal was to understand the aerodynamic interactions in the peloton, i.e., the main pack of cyclists in a race. Read more…

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This