HPE & Intel Omni-Path Architecture Help Researchers Clear Path Toward Safe, Next-Gen Nuclear Fusion

By Bill Seidle

February 20, 2019

Learn more about Nuclear Neural Nets and how HPE and Intel Omni-Path Architecture help researchers clear the path toward safe, next-generation nuclear fusion.

Key takeaways

  • One roadblock to achieving nuclear fusion as a viable power source is the presence of large-scale instabilities known as disruptions. Disruptions produce rapid loss in magnetically confined thermonuclear plasmas and can significantly damage the reactor prototype.
  • Control systems in hot thermonuclear plasmas must be designed to avoid or mitigate disruptions that need to be predicted.1
  • Tokyo Tech’s neural networks are assembled on the Tsubame-3 supercomputer comprised of HPE systems, several thousand Nvidia Pascal P-100 GPUs, and Intel® Omni-Path Architecture fabric.
  • Princeton University’s deep learning disruption predictor FRNN used Tsubame-3 to dramatically reduce training time while delivering outstanding results2

Diving deeper into the nuclear fusion waters with machine learning
Turning abundant water into endless reservoirs of fuel—and the nuclear fusion process into the ultimate clean and limitless source of energy—has been the goal of fusion research for decades. The leading line of research involves magnetically confining a hot thermonuclear plasma inside a large, toroidal-shaped reactor called a “Tokamak.” ITER Tokamak is the current prototype. This $25B international burning plasma experiment under construction in France involves seven governments (including Japan) and represents over half of the world’s population.

Now researchers at Tokyo Institute of Technology (Tokyo Tech), in concert with physicists at Princeton University in the U.S., are pioneering a new breed of machine learning to improve the ability to predict and eventually control the behavior of fusion reactions such as disruptions and move closer toward the goal of delivering abundant fusion power. The deep learning Princeton “Fusion Recurrent Neural Network” (FRNN) code leverages, in part, the power of Tokyo Tech’s TSUBAME three supercomputer, including utilization of the HPE SGI 8600 HPC systems and Nvidia GPUs interconnected with Intel® Omni-Path Architecture (OPA) fabric.

FRNN represents a small but potentially significant part of the much larger projected fusion system. Rapidly applying lessons learned from using data obtained from leading thermonuclear plasma experiments, the artificial intelligence (AI) and deep Learning FRNN predictor can be used in associated Plasma Control System (PCS) to help guide a Tokamak’s fusion plasma away from dangerous, large-scale disruptive instabilities.

Although the EUROfusion Joint European Torus (JET) has achieved approximately “break-even” (power out = power in), disruptions are a substantial part of the reason that nuclear fusion has yet to achieve breakthrough levels of energy generation currently targeted by ITER. ITER’s goal is to achieve a factor of ten improvement above break-even conditions. Fusion plasmas in Tokamak reactors are notoriously difficult to contain and guide toward self-sustaining reactions. Most prominent among the reasons plasmas in Tokamaks can become unstable and incapable of sustaining nuclear reactions are major disruptions.3

The grand challenge is for a reactor system to be able to read a large, complex array of measured signals from the Tokamak, engage a highly accurate predictor (such as the DL FRNN) to make predictions at least 30 milliseconds before disruptions occur, and then couple to a plasma control system that is capable of avoiding the actual occurrence of the disruptive event by, e.g., modifying the tokamak’s current profile. As an example of the kind of big data sets that must be processed to identify influential signals of future disruptive events, analysts have collected 55 gigabytes of data for a series of brief runs. The entire history of JET runs consists of more than 350 terabytes and continues to grow.

Previous attempts to rapidly process JET data included classical/basic machine learning algorithms like “support vector machine” (SVM) machine learning. These methods have proven successful in predicting oncoming plasma disruptions within the 30 ms time window mandated with success rates of up to 89%.

However next-generation experimental fusion reactors like ITER will likely require 95% or better success rate for predictions. Fortunately, working with the same data sets as the JET team, FRNN has achieved close to 94% and is providing a key inroad to future fusion sustainability.

Subsequently, the Princeton physicists, led by Prof. William Tang, ran their FRNN models on TSUBAME 3.0 and a range of other clusters and servers ranging from 1000 GPUs to more than 4000 GPUs, establishing the inherent scalability of their solution together with efficient use of hyperparamter tuning to deliver valuable new physics insights.

Prof. Satoshi Matsuoka of TITech, HPC system designer who architected Tsubame 3 as well as its predecessors Tsubame 1 & 2, says Intel OPA helps to ensure that TSUBAME can achieve a higher level of scalability.

“As we go to scalable learning, meaning that we employ a lot more many-core processors for machine learning, then network injection bandwidth in the nodes plays a significant role in sustaining scalability,” Matsuoka told The Next Platform. “So, with Intel OPA, having this significant amount of injection bandwidth will allow these machine learning workloads, especially deep learning training and inference workloads, to scale well.”4

“When you look at [TSUBAME 3], based on HPE Apollo blades, it doesn’t appear that big,” Matsuoka said. “There are only 540 nodes. But they are very different, very fat nodes with four Nvidia* Tesla* GP100 GPUs, two 14-core Intel® Xeon processors E5-2680 v4, two dual-port Intel OPA host fabric adapters (HFAs), and 2TB of NVMe storage, all in a non-traditional server design that takes up only 1U of space.”5

To discover how HPE and Intel OPA can together change your business—and bring new, more comprehensive AI and machine learning models into your company’s workflow, contact your Intel or HPE sales representative today. Learn more about the HPE and Intel High-Performance Computing Alliance too.



1 [at least 30 milliseconds before disruptions and with >95% accuracy (“classical” machine learning methods are generally unable to meet these targets)].

2 (~94% accuracy for up to 100 ms before disruptions).

For example, a major loss of “confinement” (with hot plasma breaking out of the reactor’s magnetic fields that hold them in place), current “quench” disruptions have been observed in JET to produce high magnetic forces that lead to radiation bursts which damage the Tokamak and surrounding equipment.

4 Ken Strandberg, “Inside View: Tokyo Tech’s Massive Tsubame 3 Supercomputer” The Next Platform (Aug. 22, 2017)

5 Ken Strandberg, “Inside View: Tokyo Tech’s Massive Tsubame 3 Supercomputer” The Next Platform (Aug. 22, 2017)

Return to Solution Channel Homepage

HPE Resources

Follow @HPE_HPC

HPE on Facebook

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

GTC 2019: Chief Scientist Bill Dally Provides Glimpse into Nvidia Research Engine

March 22, 2019

Amid the frenzy of GTC this week – Nvidia’s annual conference showcasing all things GPU (and now AI) – William Dally, chief scientist and SVP of research, provided a brief but insightful portrait of Nvidia’s rese Read more…

By John Russell

ORNL Helps Identify Challenges of Extremely Heterogeneous Architectures

March 21, 2019

Exponential growth in classical computing over the last two decades has produced hardware and software that support lightning-fast processing speeds, but advancements are topping out as computing architectures reach thei Read more…

By Laurie Varma

Interview with 2019 Person to Watch Jim Keller

March 21, 2019

On the heels of Intel's reaffirmation that it will deliver the first U.S. exascale computer in 2021, which will feature the company's new Intel Xe architecture, we bring you our interview with our 2019 Person to Watch Jim Keller, head of the Silicon Engineering Group at Intel. Read more…

By HPCwire Editorial Team

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Insurance: Where’s the Risk?

Insurers are facing extreme competitive challenges in their core businesses. Property and Casualty (P&C) and Life and Health (L&H) firms alike are highly impacted by the ongoing globalization, increasing regulation, and digital transformation of their client bases. Read more…

What’s New in HPC Research: TensorFlow, Buddy Compression, Intel Optane & More

March 20, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

GTC 2019: Chief Scientist Bill Dally Provides Glimpse into Nvidia Research Engine

March 22, 2019

Amid the frenzy of GTC this week – Nvidia’s annual conference showcasing all things GPU (and now AI) – William Dally, chief scientist and SVP of research, Read more…

By John Russell

At GTC: Nvidia Expands Scope of Its AI and Datacenter Ecosystem

March 19, 2019

In the high-stakes race to provide the AI life-cycle solution of choice, three of the biggest horses in the field are IBM, Intel and Nvidia. While the latter is only a fraction of the size of its two bigger rivals, and has been in business for only a fraction of the time, Nvidia continues to impress with an expanding array of new GPU-based hardware, software, robotics, partnerships and... Read more…

By Doug Black

Nvidia Debuts Clara AI Toolkit with Pre-Trained Models for Radiology Use

March 19, 2019

AI’s push into healthcare got a boost yesterday with Nvidia’s release of the Clara Deploy AI toolkit which includes 13 pre-trained models for use in radiolo Read more…

By John Russell

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

Oil and Gas Supercloud Clears Out Remaining Knights Landing Inventory: All 38,000 Wafers

March 13, 2019

The McCloud HPC service being built by Australia’s DownUnder GeoSolutions (DUG) outside Houston is set to become the largest oil and gas cloud in the world th Read more…

By Tiffany Trader

Quick Take: Trump’s 2020 Budget Spares DoE-funded HPC but Slams NSF and NIH

March 12, 2019

U.S. President Donald Trump’s 2020 budget request, released yesterday, proposes deep cuts in many science programs but seems to spare HPC funding by the Depar Read more…

By John Russell

Nvidia Wins Mellanox Stakes for $6.9 Billion

March 11, 2019

The long-rumored acquisition of Mellanox came to fruition this morning with GPU chipmaker Nvidia’s announcement that it has purchased the high-performance net Read more…

By Doug Black

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Move Over Lustre & Spectrum Scale – Here Comes BeeGFS?

November 26, 2018

Is BeeGFS – the parallel file system with European roots – on a path to compete with Lustre and Spectrum Scale worldwide in HPC environments? Frank Herold Read more…

By John Russell

France to Deploy AI-Focused Supercomputer: Jean Zay

January 22, 2019

HPE announced today that it won the contract to build a supercomputer that will drive France’s AI and HPC efforts. The computer will be part of GENCI, the Fre Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This