SGI, ANSYS Set New Record for Scaling Commercial CAE Code

By Doug Black

September 27, 2016

SGI, the supercomputing vendor recently acquired by HPE, has teamed with ANSYS, the product engineering and simulation software company, to set a new world record for scaling commercial CAE code. According to SGI, the two companies broke a record set last year by running ANSYS Fluent combustion modeling software across 145,000 CPU cores, exceeding by more than 16,000 the old record.

Indeed it’s been a good week for SGI. In a separate blog written today by Gabriel Broner, SGI’s general manager and vice president for high performance computing, the company reported achieving two new records undertaken in conjunction with JAIST, the Japan Advanced Institute of Science and Technology. “[We] set new world records of 50,200 for SPECint_rate_base2006 and 51,500 for SPECfp_rate_base2006 with their SGI UV 3000 system,” wrote Broner.

The ANSYS announcement was highlighted this week in a blog post by Tony DeVarco, director of virtual product development manufacturing solutions at SGI. Extreme scaling of simulation code is a critical issue for manufacturers using HPC-class systems to leverage maximum performance from modeling software.

“SGI was able to run the ANSYS-provided 830 million cell gas combustor model from 1,296 to 145,152 CPU cores,” DeVarco said. “This reduces the total solver wall clock time to run a single simulation from 20 minutes for 1,296 cores to a mere 13 seconds using 145,152 cores and achieving an overall scaling efficiency of 83 percent.”

ansys-combustor-benchmarkThis is the latest in a series of CFD benchmarking projects the two companies have undertaken on a joint basis. The first took place more than a year ago, according to DeVarco, when together they demonstrated that the SGI UV in-memory computing platform and ANSYS HFSS software could solve large, high frequency electromagnetics problems, such as cosite analysis and radar cross section analysis, “as well as allow multiple frequency sweeps to be run without running out of computer system memory.”

Last November, ANSYS approached SGI to work on demonstrating ANSYS Maxwell’s Time Decomposition Method, which allows the simultaneous solving of all the steps involved in a low frequency electromagnetic problem.

sgi-tony-devarcoDeVarco said that ANSYS 17.0, released earlier this year, drew the attention of SGI because of the ANSYS Mechanical package’s ability to scale up to 1,000 cores. “Our applications engineer who works closely with our structural mechanics customers took the V17 sp-5 Model and scaled it to 1,008 cores,” DeVarco said.

Then last month, ANSYS and SGI application engineers worked together to achieve a new world record for scaling ANSYS Fluent on a SGI ICE XA system, one of the world’s fastest commercial distributed memory supercomputers. DeVarco said the benchmark came about when members of the SGI manufacturing team had built a new system for the National Center for Atmospheric Research. As the system (named “Cheyenne”) went through testing, the SGI engineers wanted to benchmark it by running a commercial code on the full system. “ANSYS Fluent fit the bill,” he said.

DeVarco added that the Fluent benchmark was achieved using SGI MPI PerfBoost, which is designed to allow technical applications written for other MPI implementations to leverage SGI Message Passage Toolkit (MPI) at runtime without recompiling.

SGI’s other highlight, the SPECrate record, measures the throughput or capacity of a machine to carry out a number of simultaneous tasks. “They are based on real world application codes and are highly valued as representative workloads for large, multi-processor systems,” wrote Broner.

SPECrate FP Metric – Floating Point Application Throughput

jaist-1-fp-768x74

SPECrate Integer Metric – Integer Application Throughput

jaist-2-int-768x71

JAIST was founded in October 1990 as the first independent national graduate school in Japan, to carry out graduate education based on research at the highest level in advanced science and technology. The JAIST SGI UV 3000 is a single shared memory system with 256 Intel Xeon E5-4655 v3 processors (1536 cores) and 32 terabytes of memory. The JAIST SGI UV 3000 high-performance system supports researchers and developers in various areas including large-scale simulation, machine learning, and high-speed algorithm research.

This article was first published on HPCwire’s sister publication, EnterpriseTech.

HPE Resources

Follow @HPE_HPC

HPE on Facebook

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia Debuts Turing Architecture, Focusing on Real-Time Ray Tracing

August 16, 2018

From the SIGGRAPH professional graphics conference in Vancouver this week, Nvidia CEO Jensen Huang unveiled Turing, the company's next-gen GPU platform that introduces new RT Cores to accelerate ray tracing and new Tenso Read more…

By Tiffany Trader

HPC Coding: The Power of L(o)osing Control

August 16, 2018

Exascale roadmaps, exascale projects and exascale lobbyists ask, on-again-off-again, for a fundamental rewrite of major code building blocks. Otherwise, so they claim, codes will not scale up. Naturally, some exascale pr Read more…

By Tobias Weinzierl

STAQ(ing) the Quantum Computing Deck

August 16, 2018

Quantum computers – at least for now – remain noisy. That’s another way of saying unreliable and in diverse ways that often depend on the specific quantum technology used. One idea is to mitigate noisiness and perh Read more…

By John Russell

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

Super Problem Solving

You might think that tackling the world’s toughest problems is a job only for superheroes, but at special places such as the Oak Ridge National Laboratory, supercomputers are the real heroes. Read more…

NREL ‘Eagle’ Supercomputer to Advance Energy Tech R&D

August 14, 2018

The U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) has contracted with Hewlett Packard Enterprise (HPE) for a new 8-petaflops (peak) supercomputer that will be used to advance early-stage R&a Read more…

By Tiffany Trader

STAQ(ing) the Quantum Computing Deck

August 16, 2018

Quantum computers – at least for now – remain noisy. That’s another way of saying unreliable and in diverse ways that often depend on the specific quantum Read more…

By John Russell

NREL ‘Eagle’ Supercomputer to Advance Energy Tech R&D

August 14, 2018

The U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) has contracted with Hewlett Packard Enterprise (HPE) for a new 8-petaflops (peak Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

SLATE Update: Making Math Libraries Exascale-ready

August 9, 2018

Practically-speaking, achieving exascale computing requires enabling HPC software to effectively use accelerators – mostly GPUs at present – and that remain Read more…

By John Russell

Summertime in Washington: Some Unexpected Advanced Computing News

August 8, 2018

Summertime in Washington DC is known for its heat and humidity. That is why most people get away to either the mountains or the seashore and things slow down. H Read more…

By Alex R. Larzelere

NSF Invests $15 Million in Quantum STAQ

August 7, 2018

Quantum computing development is in full ascent as global backers aim to transcend the limitations of classical computing by leveraging the magical-seeming prop Read more…

By Tiffany Trader

By the Numbers: Cray Would Like Exascale to Be the Icing on the Cake

August 1, 2018

On its earnings call held for investors yesterday, Cray gave an accounting for its latest quarterly financials, offered future guidance and provided an update o Read more…

By Tiffany Trader

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This