Why Field Programmable Gate Arrays (FPGAs) are the Versatile Accelerator

By Bill Mannel

October 8, 2018

The invention and development of Central Processing Units (CPUs) have certainly played pivotal roles in the trajectory of human history. It is fair to say that Intel’s development of the CPU has led to the democratization of computing and enabled countless innovations, large and small.

As with all things, further specialization is possible. Acceleration of certain workloads may be achieved through continued specialization of processing units. Graphical Processing Units (GPUs), for example, were originally created to accelerate graphical-related workloads. GPUs are now being used for other tasks, such as bitcoin mining.

For clarity, let’s compare CPUs versus GPUs: A CPU is a general-purpose processor, designed to run a broad range of operations necessary for an entire system, such as IO or virtual memory. GPUs are more specifically designed for highly repetitive tasks that can be highly parallelized. Now on to discussing Field Programmable Gate Arrays.

Focusing on Field Programmable Gate Arrays (FPGAs)

While GPUs are good at what they do, their strengths are biased towards very particular types of processes. Another more versatile type of accelerator, Field Programmable Gate Arrays (FPGAs), has seen further development by Intel and offers customizable, gate-array based multi-functional acceleration. In fact, the FPGA is designed to actually be configured by a customer or designer after manufacturing; hence it is “field-programmable.” An FPGA offers high I/O bandwidth plus a fine-grained, flexible and custom parallelism, allowing it to be programmed for many different types of workloads, including Big Data analytics, financial services and deep learning. If a GPU is something like a hammer, an FPGA is like Doctor Who’s sonic screwdriver, an adaptable tool that can be used to solve many different types of problems.

HPE has teamed up with Intel to offer FPGA solutions based on HPE ProLiant DL Gen10 servers, including the HPE ProLiant DL360 and DL380 server platforms with Intel® Arria® 10 GX FPGAs. The HPE ProLiant DL360 offers a 1U dual processor dense compute server with exceptional flexibility and expandability, while the HPE ProLiant DL380 provides a 2U dual processor server with world-class performance and versatility for multiple workloads. HPE servers also offer a unique Silicon Root of Trust to protect against firmware-based cybersecurity threats. The combination of HPE servers with Intel FPGAs provides flexible, industrial-strength compute solutions that can be tuned for specific workloads.

One of the traditional difficulties with FPGAs has been the specialized nature of programming required. In many cases, this has rendered FPGA technology inaccessible to data scientists and application developers. Intel has developed the Acceleration Stack for Intel Xeon CPU with FPGAs to provide a common developer interface for both application and accelerator function developers, and includes drivers, Application Programming Interfaces (APIs) and an FPGA Interface Manager. Together with acceleration libraries and development tools, Intel’s Acceleration Stack enables developers to focus on the unique value-add of their solutions.

Intel has also open-sourced the Open Programmable Acceleration Engine (OPAE) technology, a software programming layer that provides a consistent API across Intel FPGA platforms. It is designed for minimal software overhead and latency, while providing an abstraction for hardware-specific FPGA resource details. OPAE is the default software stack for the Intel® Xeon® processor with both integrated and discrete FPGA devices.

How simplifying the programming for FPGAs plays directly to its strengths

An FPGA can be reprogrammed and updated with new algorithms for different workloads. This flexibility allows a single FPGA to accelerate many different workloads efficiently, and to support future applications without the need to change the hardware. For instance, a FPGA could handle one workload during the morning shift and a different workload during an evening shift. Programmability also allows FPGAs to stay abreast of evolving standards, such as networking protocols, and enables updates to maintain compliance when a standard is finalized—again, without having to respin the hardware.

An FPGA can also switch between multiple programs in real time to adapt to changing workloads. An example of this is with the Bigstream Acceleration solution. Bigstream accelerates Spark performance using its software solution in conjunction with an Intel FPGA. Bigstream will reconfigure the FPGA to best fit the dataflow to be processed, resulting in up to 8x performance acceleration for end-to-end applications, with a potential for higher acceleration in future releases.* This adaptability and flexibility of FPGAs effectively render them to a large extent future-proof, while also enhancing the ROI of the servers that use them by extending their lifecycle.

How performance gains enabled by FPGAs provide increased productivity and boosts ROI

Data demands on IT are continually increasing and relational databases and Microsoft SQL continue to be the backbone for enterprise-class data analytics. Swarm64 offers an innovative add-on to PostgreSQL, the S64 Data Accelerator for PostgreSQL (S64DA),  which delivers up to 4x data warehouse acceleration with no changes to the BI application. The S64DA solution is designed to significantly increase data processing and analytics performance for demanding workloads, using Intel FPGAs to overcome latency and bandwidth limitations of storage accessed via a network, either locally or from the cloud. Intel FPGAs can directly connect to networks, removing the need for data to go through processors and reducing overall system latency. Leveraging the highly parallel nature of FPGAs with optimized, workload-specific programming provides productivity gains for high value workloads.

How partners and solutions are leveraging FPGAs

Financial industry

Another example of how Intel FPGAs increase productivity is being delivered by Levyx through its Financial Risk Analytics Acceleration solution. By optimizing the performance of the underlying storage, Levyx helps offload compute-intensive functions directly onto FPGAs for faster processing in previously time-consuming and resource-intensive large-scale operations like stock/options financial algorithm backtesting at financial institutions. Backtesting is a highly parallel, data- and compute-intensive simulation workload with large multi-terabyte datasets. Backtesting is used to test thousands of trading models to find those that have been historically profitable to determine the best trading practices to maximize current and future profitability.

To stay ahead of the competition, the models must continually evolve and be rapidly evaluated for algorithmic trading success. The efficacy of these models can have a significant impact on trading revenues at capital markets firms, including money-center banks, large hedge funds and trading exchanges. Levyx effectively allows critical backtesting functions to be performed 851% faster than competing solutions.** With these low-latency, compute-intensive workloads and massive data sets, the performance, flexibility and programmability of Intel FPGAs have a direct impact on the productivity and revenue of Levyx customers.

Power savings

Since FPGAs can be optimized for specific workloads, the resulting efficiency leads to lower power consumption. This decreased power consumption allows FPGAs to be added to existing infrastructure to increase performance, while minimizing the amount of extraneous space or power required. Since lower power consumptions reduces heat within the data center, additional savings are gained by minimizing the overall power needed for a given performance level. When these power savings are multiplied over the entire data center, with attendant reduced power and cooling costs, FPGAs clearly help to minimize TCO by reducing OPEX.

AI and deep learning

In the rapidly developing field of AI and deep learning, FPGAs are being recognized as a solution for inferencing, which is essentially the application of deep learning training. In the training cycle, a neural network model is “taught” how to recognize a pattern, like cats. Inferencing occurs when the network is shown an image, and it signals whether the image is a cat or not. In other words, training develops the model while inferencing is the runtime application of the model.

Inferencing requires low-latency performance, efficiency and flexibility. FPGAs offer a highly parallel architecture coupled with high-bandwidth memory to provide the low-latency performance required for real-time inferencing. FPGAs effectively implement software algorithms in hardware for optimized performance, but also provide the energy efficiency to minimize deployment power requirements. In general, inferencing of a model is a specific task, including facial recognition and language translation, which maps well to the strengths of FPGAs.

Accelerating business-critical workloads with FPGA solutions

The collaboration between HPE and Intel provides industrial-strength FPGA solutions that accelerate business-critical workloads. The supporting software ecosystem is developing at a rapid enough pace to be able to continuously add value to customers in an ever-expanding range of uses cases. The performance, adaptability and power efficiency of FPGAs serve to increase productivity and drive innovation—with rapid ROI and minimized TCO.

Learn more about FPGA solutions

For further information, please visit the Intel FPGA Acceleration Hub.

See HPE FPGA solutions at HPE-Cast Japan, the HPE HPC and AI Forum held on September 7. (Note: The HP-Cast web page is in Japanese.)

Return to Solution Channel Homepage

HPE Resources

Follow @HPE_HPC

HPE on Facebook

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPE to Acquire Cray for $1.3B

May 17, 2019

Venerable supercomputer pioneer Cray Inc. will be acquired by Hewlett Packard Enterprise for $1.3 billion under a definitive agreement announced this morning. The news follows HPE’s acquisition nearly three years ago o Read more…

By Doug Black & Tiffany Trader

China Establishes Seventh National Supercomputing Center

May 16, 2019

Chinese media is reporting that China will construct a new National Supercomputer Center in Zhengzhou, in central China's Henan Province. The new Zhengzhou facility will house a 100-petaflops supercomputer and will be ta Read more…

By Staff report

Interview with 2019 Person to Watch Ken King

May 16, 2019

Today, as the final installment of our HPCwire People to Watch focus series, we present our interview with Ken King, general manager of OpenPOWER for the IBM Systems Group. Ken is responsible for building and managing t Read more…

By HPCwire Editorial Team

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

For decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Autonomous Vehicles: New challenges for the CAE Data Center

Managing infrastructure complexity in the age of AI

When most of us hear the term autonomous vehicles, we conjure up images of driverless Waymos or robotic transport trucks driving long-haul highway routes. Read more…

What’s New in HPC Research: Image Classification, Crowd Computing, Genome Informatics & More

May 15, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

HPE to Acquire Cray for $1.3B

May 17, 2019

Venerable supercomputer pioneer Cray Inc. will be acquired by Hewlett Packard Enterprise for $1.3 billion under a definitive agreement announced this morning. T Read more…

By Doug Black & Tiffany Trader

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

CCC Offers Draft 20-Year AI Roadmap; Seeks Comments

May 14, 2019

Artificial Intelligence in all its guises has captured much of the conversation in HPC and general computing today. The White House, DARPA, IARPA, and Departmen Read more…

By John Russell

Cascade Lake Shows Up to 84 Percent Gen-on-Gen Advantage on STAC Benchmarking

May 13, 2019

The Securities Technology Analysis Center (STAC) issued a report Friday comparing the performance of Intel's Cascade Lake processors with previous-gen Skylake u Read more…

By Tiffany Trader

Nvidia Claims 6000x Speed-Up for Stock Trading Backtest Benchmark

May 13, 2019

A stock trading backtesting algorithm used by hedge funds to simulate trading variants has received a massive, GPU-based performance boost, according to Nvidia, Read more…

By Doug Black

ASC19: NTHU Returns to Glory

May 11, 2019

As many of you Student Cluster Competition fanatics know by now, Taiwan’s National Tsing Hua University (NTHU) won the gold medal at the recently concluded AS Read more…

By Dan Olds

Intel 7nm GPU on Roadmap for 2021, OneAPI Coming This Year

May 8, 2019

At Intel's investor meeting today in Santa Clara, Calif., the company filled in details of its roadmap and product launch plans and sought to allay concerns about delays of its 10nm chips. In laying out its 10nm and 7nm timelines, Intel revealed that its first 7nm product would be... Read more…

By Tiffany Trader

Ten Great Reasons to Build the 1.5 Exaflops Frontier

May 7, 2019

It’s perhaps obvious that the fundamental reason for building expensive exascale computers is to drive science and industry forward, realizing the resulting b Read more…

By John Russell

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

France to Deploy AI-Focused Supercomputer: Jean Zay

January 22, 2019

HPE announced today that it won the contract to build a supercomputer that will drive France’s AI and HPC efforts. The computer will be part of GENCI, the Fre Read more…

By Tiffany Trader

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

Nvidia Claims 6000x Speed-Up for Stock Trading Backtest Benchmark

May 13, 2019

A stock trading backtesting algorithm used by hedge funds to simulate trading variants has received a massive, GPU-based performance boost, according to Nvidia, Read more…

By Doug Black

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This