A Crystal Ball for HPC

By Gabor Samu, IBM Systems Infrastructure

September 10, 2018

People are notoriously bad at predicting the future.  This very much includes experts. In the Forbes article “Why Most Predictions Are So Bad” Philip Tetlock discusses the largest and best-known test of the accuracy of expert predictions which show that any experts would do better if they make random guesses.

HPC users can be bad at predictions as well – specifically at predicting the memory consumption and job runtime required for their workloads.  When we compare what users request with what is actually used, it can be significantly more than the actual amount of resources consumed by the job. This very human trait can drive down system utilization and throughput – which are detrimental to HPC environments.

More isn’t necessarily better

Humans are a curious bunch.  Always looking for more; whether it’s asking for 2 scoops at the local ice cream parlor to our desire to win the big lottery jackpot, humans often strive to play the bigger, better game – it’s human nature.

Naturally, this desire for more manifests itself in the world of High-performance computing (HPC).  Users of HPC environments often submit jobs requesting a specific amount of resources which are far more than the actual amount of resources consumed by the job.  Without a good way to estimate the resource use of their applications, even well-seasoned HPC users tend to ask for more resources than actually required to avoid the risk of the application failing due to insufficient resources.

Are we there yet?

If you ask a system administrator what the number one question they get from users, the answer will be “why is my job not running?”   The question they really should be asking is “when will my job complete?”.   However, to predict the completion time of a given job you need to a) know it’s predicted runtime, and b) and when it will start.   And estimating the start time is dependent upon knowing the runtime of every other job in the system.  

A helping hand from prediction

For over 25 years, IBM Spectrum LSF has led the industry with innovative capabilities designed to optimize the utilization of valuable HPC assets, while maximizing the productivity of HPC users with powerful, yet easy to use interfaces for job submission and management.

Designed to maximize resource, the IBM Spectrum LSF VM Predictor technical preview is a self-contained VM image which provides IBM Spectrum LSF job resource usage prediction capabilities for job runtime and memory consumption, in addition to GUI-based analysis of prediction results.  It uses historical data from the Spectrum LSF environment to model application patterns and the predictions give recommendations to adjust resource requirements specified by HPC users when submitting jobs.  This helps takes the guesswork out of the hands of the HPC users, while helping administrators of HPC environments to reduce resource waste and overall degradation of performance due to overzealous requests for resources.

Improving time to insight

IBM Spectrum LSF includes a simulation function that can be used to estimate when a given job will start, and as previously mentioned, to do that with any degree of accuracy requires either the users to accurately specify job runtime or to have the system learn user/application behavior to predict the run time.

Figure 1 compares the user specified runtime (in most cases the user has just taken the system defaults) against LSF Predictor.    For this dataset, the LSF Predictor gives a high degree of accuracy.  While it isn’t perfect, it provides users with greater confidence of when their work will start, and more importantly, when they can expect results.

Overall system utilization and throughput is increased by better backfill scheduling, and fewer jobs get terminated due to reaching run limits.

Figure 1 Comparison of user specified and predicted job runtime limits

System utilization can further be improved by right sizing job requirements – such as how much memory a job reserves.   Figure 2 shows percentage error of user specified memory requirement versus predicted values.  What’s interesting to note in this dataset, is that for jobs where the actual memory utilization is small, users frequently specified significantly more memory than was actually used.  For example, for jobs that only utilize a few Megabytes of memory, users ask for Gigabytes.  Conversely, users seem to have a good handle on specifying required memory when jobs really do use large memory.

By right sizing the requirements, jobs are likely to wait for less time, thus further reducing time to insight.

 Figure 2 Percentage error comparing user specified and predicated memory utilization for jobs.

Dollars and Sense?

By having a better understanding of what resources a job really needs, Administrators can optimize hardware procurement for what is actually needed versus what users may think they need.

When running workload on premise users rarely think about the cost of job, or the cost of inefficiencies in the job.    But this is of paramount importance when running on the cloud.  If your job only needs a few megabytes of memory and you are paying for large memory instances, the cost of that job is a lot more expensive.   If you think your job is only going to run for minutes, and it runs for tens of hours, that is a lot more expensive.

Conversely, if you have a high degree of confidence in the resources your workload will require, you can make a much more informed decision on whether you want to wait and run on premise, or pay and run now on the cloud.

Technology Preview

Setting up the Spectrum LSF VM Predictor technical preview is straightforward.  First, one needs to import job accounting data from Spectrum LSF, then select jobs submitted during a user specified interval for training.  The Spectrum LSF VM Predictor technical preview provides three machine learning algorithms to train models.  With the model training complete, administrators can easily integrate the inference of resource prediction via the Spectrum LSF esub interface and compare with the resources requested during job submission and adjust as needed.  This is all facilitated through RESTful APIs supporting queries and inference against the models built for Spectrum LSF jobs.  Interested in trying the Spectrum LSF VM Predictor technical preview?  Please contact us via email here.

Return to Solution Channel Homepage

IBM Resources

Follow @IBMSystems

IBM Systems on Facebook

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Insights from Optimized Codes on Cineca’s Marconi

February 15, 2019

What can you do with 381,392 CPU cores? For Cineca, it means enabling computational scientists to expand a large part of the world’s body of knowledge from the nanoscale to the astronomic, from calculating quantum effe Read more…

By Ken Strandberg

What Will IBM’s AI Debater Learn from Its Loss?

February 14, 2019

The utility of IBM’s latest man-versus-machine gambit is debatable. At the very least its Project Debater got us thinking about the potential uses of artificial intelligence as a way of helping humans sift through al Read more…

By George Leopold

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst of bankruptcy proceedings. According to Dutch news site Drimb Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE Systems With Intel Omni-Path: Architected for Value and Accessible High-Performance Computing

Today’s high-performance computing (HPC) and artificial intelligence (AI) users value high performing clusters. And the higher the performance that their system can deliver, the better. Read more…

IBM Accelerated Insights

Medical Research Powered by Data

“We’re all the same, but we’re unique as well. In that uniqueness lies all of the answers….”

  • Mark Tykocinski, MD, Provost, Executive Vice President for Academic Affairs, Thomas Jefferson University

Getting the answers to what causes some people to develop diseases and not others is driving the groundbreaking medical research being conducted by the Computational Medicine Center at Thomas Jefferson University in Philadelphia. Read more…

South African Weather Service Doubles Compute and Triples Storage Capacity of Cray System

February 13, 2019

South Africa has made headlines in recent years for its commitment to HPC leadership in Africa – and now, Cray has announced another major South African HPC expansion. Cray has been awarded contracts with Eclipse Holdings Ltd. to upgrade the supercomputing system operated by the South African Weather Service (SAWS). Read more…

By Oliver Peckham

Insights from Optimized Codes on Cineca’s Marconi

February 15, 2019

What can you do with 381,392 CPU cores? For Cineca, it means enabling computational scientists to expand a large part of the world’s body of knowledge from th Read more…

By Ken Strandberg

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

UC Berkeley Paper Heralds Rise of Serverless Computing in the Cloud – Do You Agree?

February 13, 2019

Almost exactly ten years to the day from publishing of their widely-read, seminal paper on cloud computing, UC Berkeley researchers have issued another ambitious examination of cloud computing - Cloud Programming Simplified: A Berkeley View on Serverless Computing. The new work heralds the rise of ‘serverless computing’ as the next dominant phase of cloud computing. Read more…

By John Russell

Iowa ‘Grows Its Own’ to Fill the HPC Workforce Pipeline

February 13, 2019

The global workforce that supports advanced computing, scientific software and high-speed research networks is relatively small when you stop to consider the magnitude of the transformative discoveries it empowers. Technical conferences provide a forum where specialists convene to learn about the latest innovations and schedule face-time with colleagues from other institutions. Read more…

By Elizabeth Leake, STEM-Trek

Trump Signs Executive Order Launching U.S. AI Initiative

February 11, 2019

U.S. President Donald Trump issued an Executive Order (EO) today launching a U.S Artificial Intelligence Initiative. The new initiative - Maintaining American L Read more…

By John Russell

Celebrating Women in Science: Meet Four Women Leading the Way in HPC

February 11, 2019

One only needs to look around at virtually any CS/tech conference to realize that women are underrepresented, and that holds true of HPC. SC hosts over 13,000 H Read more…

By AJ Lauer

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

Assessing Government Shutdown’s Impact on HPC

February 6, 2019

After a 35-day federal government shutdown, the longest in U.S. history, government agencies are taking stock of the damage -- and girding for a potential secon Read more…

By Tiffany Trader

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This