Containers Move Upscale

By Gabor Samu

September 10, 2018

The interest in “container” technologies is high and rising rapidly. In the next several years, the number of installed and in-use containers may reach into the billions.

Designed to be very flexible, lightweight, and portable, containers will be used to run applications in everything from traditional and cloud data centers, to cars, cruise ships, airport terminals, gateways to the Internet of Things, and yes, even in high performance computing (HPC) environments.

The truth is, using container-like technologies in high performance computing is not a new idea. The HPC community has employed these types of technologies for many years for workload resource isolation, process tracking, job controlling, and many other functions. But these HPC-oriented solutions were not true containers; instead they were technologies such as the workload manager on IBM AIX used for memory and CPU resource enforcement, or control groups in Linux environments, or logical partitions used for application isolation and mobility.

Though a number of companies and organizations are now providing what are considered true container products and solutions, one of the first and most well-known was Docker. These containers wrap a piece of software in a complete filesystem that contains everything needed to run, including application code, system tools, system libraries, other dependencies, and in fact almost everything installable to a server.

Virtual machines (VM) are yet another form of workload container used in HPC clusters and cloud environments.  At the most basic level, VMs make one server appear as many – 2000 physical machines could end up as 72,000 VMs. But for many HPC use cases, VM architectures are difficult to manage and use. For example, changing VMs to run different workloads is challenging. And significant server resources are wasted in hosting separate operating system (OS) instances for each application or job.

Containers, on the other hand, provide almost the same level of isolation as VMs but with much lower overheads. A container only comprises the application and its dependencies, thus the size of the package is much smaller. It runs as an isolated process in user space on the host OS, sharing the kernel with other containers. Scheduling containers is no different from scheduling jobs. Thus, containers can work well in many different HPC environments and use cases.

Containers also offer higher performance. They provide near bare metal speeds for application runtime so management operations (boot, reboot, stop, etc.) can be done in seconds – or even milliseconds – while typical VM operations may take minutes to complete. And the benefits don’t stop there. Applications typically depend on numerous libraries for correct execution. Seemingly minor changes in library versions can result in applications failing, or even worse, providing inconsistent results. This can make moving applications from one system to another – or out on to the cloud – problematic. Containers, on the other hand, can make it very easy to package up and move an application from one system to another. Users can run the applications they need, where they need them, while administrators can stop worrying about library clashes or helping users get their applications working in specific environments.

In genomics, for example, applications have a short development lifecycle and an even shorter shelf life. Environments are constantly evolving, with one tool being rapidly replaced by new variants, or something else entirely. This presents a major challenge to administrators who need all these different versions to co-exist, when many will depend on different versions of the same library or incompatible versions. With containers, application binaries, dependencies, and configurations can all be fully encapsulated independently of the host OS and other applications on the host. Users can run different versions of the software on the same host without worrying about conflicts. And new software packages and applications can easily be pushed out to compute nodes on demand, which potentially eases the application management burden for administrators.

For HPC use cases, containers offer many advantages:

  • A scientist can send an application to a colleague for verification knowing that the results aren’t going to be influenced by differences in the new environment.
  • New versions of applications can be compared with prior versions without having to worry about whether a change in the environment will influence the results.
  • Current application environments can be preserved, allowing results to be duplicated at some point in the future. This is particularly attractive in industries where both experiment data and applications are used to produce data and need to be preserved for longer periods for regulatory compliance and auditing purposes.
  • And perhaps most importantly, containers streamline the portability of HPC applications from on-premises to the cloud.

Recently, Kubernetes – an open source system used to manage Linux containers across private, public, and hybrid cloud environments – has come to the fore as the preferred method for managing container services. IBM Spectrum

Storage family member IBM Cloud Private includes Kubernetes, as well as a private image repository, a management console, and monitoring frameworks. IBM Cloud Private is a private cloud platform for developing and running workloads locally. It enables HPC users to design, develop, deploy, and manage on-premises, containerized cloud applications and provides control for how and where applications consume cloud services.

But Kubernetes is primarily concerned with managing services, not HPC “batch” workloads. To address the full range of HPC workload scheduling and management requirements, HPC administrators turn to solutions such as the IBM Spectrum Computing family.

As modern container adoption has accelerated, the IBM Spectrum Computing family has led the way in providing innovative new capabilities. IBM Spectrum LSF offers powerful workload management for demanding HPC environments, including plenty of container functionality. All the features in existing IBM Spectrum LSF releases are available to container jobs, enabling these workloads to run on IBM Spectrum LSF managed clusters and allowing HPC users to run Dockers, as well as Shifter and Singularity containerized jobs in batch mode in the same way as running other jobs. Perhaps most importantly, IBM Spectrum LSF addresses security concerns with containers in HPC environments.

Containers offer a new tool for high performance computing that increases flexibility, portability, efficiency, and performance. The powerful functionality in IBM Spectrum LSF help containers more easily move upscale into HPC environments. Together, these tools enable HPC users to tackle complex research and industrial problems with even greater efficiency and speed, opening an even wider horizon of future possibilities.

Learn more about the powerful capabilities of IBM Spectrum LSF – and move your containers upscale.

Return to Solution Channel Homepage

IBM Resources

Follow @IBMSystems

IBM Systems on Facebook

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Pfizer HPC Engineer Aims to Automate Software Stack Testing

January 17, 2019

Seeking to reign in the tediousness of manual software testing, Pfizer HPC Engineer Shahzeb Siddiqui is developing an open source software tool called buildtest, aimed at automating software stack testing by providing the community with a central repository of tests for common HPC apps and the ability to automate execution of testing. Read more…

By Tiffany Trader

Senegal Prepares to Take Delivery of Atos Supercomputer

January 16, 2019

In just a few months time, Senegal will be operating the second largest HPC system in sub-Saharan Africa. The Minister of Higher Education, Research and Innovation Mary Teuw Niane made the announcement on Monday (Jan. 14 Read more…

By Tiffany Trader

Google Cloud Platform Extends GPU Instance Options

January 16, 2019

If it's Nvidia GPUs you're after to power your AI/HPC/visualization workload, Google Cloud has them, now claiming "broadest GPU availability." Each of the three big public cloud vendors has by turn touted the latest and Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE Systems With Intel Omni-Path: Architected for Value and Accessible High-Performance Computing

Today’s high-performance computing (HPC) and artificial intelligence (AI) users value high performing clusters. And the higher the performance that their system can deliver, the better. Read more…

IBM Accelerated Insights

Resource Management in the Age of Artificial Intelligence

New challenges demand fresh approaches

Fueled by GPUs, big data, and rapid advances in software, the AI revolution is upon us. Read more…

STAC Floats ML Benchmark for Financial Services Workloads

January 16, 2019

STAC (Securities Technology Analysis Center) recently released an ‘exploratory’ benchmark for machine learning which it hopes will evolve into a firm benchmark or suite of benchmarking tools to compare the performanc Read more…

By John Russell

Google Cloud Platform Extends GPU Instance Options

January 16, 2019

If it's Nvidia GPUs you're after to power your AI/HPC/visualization workload, Google Cloud has them, now claiming "broadest GPU availability." Each of the three Read more…

By Tiffany Trader

STAC Floats ML Benchmark for Financial Services Workloads

January 16, 2019

STAC (Securities Technology Analysis Center) recently released an ‘exploratory’ benchmark for machine learning which it hopes will evolve into a firm benchm Read more…

By John Russell

A Big Data Journey While Seeking to Catalog our Universe

January 16, 2019

It turns out, astronomers have lots of photos of the sky but seek knowledge about what the photos mean. Sound familiar? Big data problems are often characterize Read more…

By James Reinders

Intel Bets Big on 2-Track Quantum Strategy

January 15, 2019

Quantum computing has lived so long in the future it’s taken on a futuristic life of its own, with a Gartner-style hype cycle that includes triggers of innovation, inflated expectations and – though a useful quantum system is still years away – anticipatory troughs of disillusionment. Read more…

By Doug Black

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

IBM’s New Global Weather Forecasting System Runs on GPUs

January 9, 2019

Anyone who has checked a forecast to decide whether or not to pack an umbrella knows that weather prediction can be a mercurial endeavor. It is a Herculean task: the constant modeling of incredibly complex systems to a high degree of accuracy at a local level within very short spans of time. Read more…

By Oliver Peckham

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

Microsoft to Buy Mellanox?

December 20, 2018

Networking equipment powerhouse Mellanox could be an acquisition target by Microsoft, according to a published report in an Israeli financial publication. Microsoft has reportedly gone so far as to engage Goldman Sachs to handle negotiations with Mellanox. Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This