Clouds Over the Ocean – a Healthcare Perspective

By Yael Shani, IBM Healthcare and Life Sciences

September 20, 2018

Advances in precision medicine, genomics, and imaging; the widespread adoption of electronic health records; and the proliferation of medical Internet of Things (IoT) and mobile devices are resulting in an explosion of structured and unstructured healthcare-related data. Industry analysts expect that by 2020, the amount of medical data in the world will double every 73 days. And a typical healthcare consumer in the developed countries will generate 1,200 terabytes of data in a lifetime.

A substantial amount of this healthcare data deluge serves to advance precision medicine, such as medical research, which drives the need for high performance computing (HPC) environments to support big data demands. For example, sequencing an individual’s entire genome, a task growing ever more common, requires the same amount of data storage as 100 feature-length movies.

But data volume isn’t the only problem faced by medical research – disparate file types generated by different research tools and environments create silos that impede data access, drive down efficiency, drive up costs, and slow times to insight. To address the challenges posed by both the volume and variety of medical research data,  world-class healthcare organizations are building data oceans.

To construct data oceans, software-defined infrastructure provides a foundation to manage and run rapidly evolving healthcare and life sciences applications (e.g. genomics, imaging, clinical, etc.). SDI enhances the HPC platform with analytics open frameworks such as Hadoop and Spark and consolidate disparate data stores. Behind the scenes, the SDI architecture creates a data hub to manage the ocean of data, orchestrate the different applications, and provide intelligent workload and policy-driven resource management. Putting all the data together into one coherent data resource to be analyzed and making it available to all users anywhere-anytime is key to facilitating research and accelerating time to insights.

The benefits are substantial. The ability to automatically migrate medical data to the optimal storage tier can substantially reduce costs. Eliminating the need for separate processing platforms for different data types dramatically increases resource utilization. Massive parallel processing and enhanced application and data portability accelerate time to insights.

But it’s not entirely serene sailing across HPC data oceans. They don’t solve every data processing problem. Medical research, like many other HPC environments, generates peaks and valleys of resource demand.  The very efficiency and high utilization rates that data oceans are designed to produce can work against them when demand peaks beyond infrastructure capabilities. To accommodate these spikes in demand, traditional HPC environments often divide up jobs and stretch out scheduling – lengthening time to insight. But the very same SDI solutions used to create data oceans can address this challenge as well – by adopting hybrid cloud.

IBM Spectrum Scale and IBM Spectrum Computing family members such as IBM Spectrum LSF bring long and successful histories of providing solutions to the full landscape of HPC challenges.

For example, by utilizing Spectrum LSF, healthcare researchers can determine through advanced reporting functionality where the bottlenecks are that cause jobs to run slower. Then IBM Spectrum LSF can move targeted jobs to the cloud. Does an HPC job require more memory? Run it on servers in the cloud with more memory. Does it need faster access to the underlying data? Provision a massively parallel IBM Spectrum Scale file system for the fastest access on the planet. Whatever resources are needed, with IBM SDI solutions, healthcare researchers can provision the required system for peak demand periods in the cloud, dynamically and automatically, only for as long as needed, resulting in faster insights for a fraction of the cost of building on-premises solutions.

The question becomes, can every high performance data architecture provide the infrastructure support, flexibility, and agility needed to meet highly demanding and unpredictable healthcare HPC requirements? Here again, IBM is offering solutions for cloud-scale data management and multi-cloud workload orchestration based on a reference architecture for high performance data and AI platforms (HPDA). Teaming with L7 Informatics (L7), the two solution-providers have built a cloud-based HPC environment that enables scientists to process and analyze huge volumes of genomics data up to 96% faster. Built on the IBM Cloud platform, the L7 Genomic Cloud uses IBM Spectrum Scale and IBM Spectrum LSF to support rapid data processing and analysis.[3]

Chris Mueller, Founder, L7 Informatics, explains: “IBM Spectrum Scale provides high-performance data storage that we can scale quickly and easily. Built-in tiering capabilities allow a lot of flexibility in how we move data around, enabling customers to seamlessly migrate data from lab instruments up to the cloud for analysis and long-term storage. IBM Spectrum LSF, meanwhile, offers everything we need for HPC workload management in a single package, from job scheduling tools to resource management capabilities. It gives us the tools to manage the L7 Genomic Cloud as a complete HPC environment rather than just as a virtual machine and associated storage layer, providing intelligent, policy-driven scheduling and improved visibility to increase throughput.”

Oceans and clouds. For millennia these natural systems have nourished and supported humanity. Perhaps it’s not as surprising as it might seem that digital versions of them are now helping to accelerate medical advancements that offer great human benefit.

Follow the links in this article to learn more about how you can build software-defined data oceans and agile hybrid clouds that help your organization lower costs while gaining precious insights faster.

Return to Solution Channel Homepage

IBM Resources

Follow @IBMSystems

IBM Systems on Facebook

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

CFD on ORNL’s Titan Simulates Cleaner, Low-MPG ‘Opposed Piston’ Engine

December 13, 2018

Pinnacle Engines is out to substantially improve vehicle gasoline efficiency and cut greenhouse gas emissions with a new motor based on an “opposed piston” design that the company hopes will be widely adopted while t Read more…

By Doug Black

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC) is procuring from Atos in two phases over the next year-an Read more…

By Tiffany Trader

Nvidia Leads Alpha MLPerf Benchmarking Round

December 12, 2018

Seven months after the launch of its AI benchmarking suite, the MLPerf consortium is releasing the first round of results based on submissions from Nvidia, Google and Intel. Of the seven benchmarks encompassed in version Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

AI Can Be Scary. But Choosing the Wrong Partners Can Be Mortifying!

As you continue to dive deeper into AI, you will discover it is more than just deep learning. AI is an extremely complex set of machine learning, deep learning, reinforcement, and analytics algorithms with varying compute, storage, memory, and communications needs. Read more…

IBM Accelerated Insights

4 Ways AI Analytics Projects Fail — and How to Succeed

“How do I de-risk my AI-driven analytics projects?” This is a common question for organizations ready to modernize their analytics portfolio. Here are four ways AI analytics projects fail—and how you can ensure success. Read more…

Neural Network ‘Synapse’ Technology Showcased at IEEE Meeting

December 12, 2018

There’s nice snapshot of advancing work to develop improved neural network “synapse” technologies posted yesterday on IEEE Spectrum. Lower power, ease of use, manufacturability, and performance are all key paramete Read more…

By John Russell

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Nvidia Leads Alpha MLPerf Benchmarking Round

December 12, 2018

Seven months after the launch of its AI benchmarking suite, the MLPerf consortium is releasing the first round of results based on submissions from Nvidia, Goog Read more…

By Tiffany Trader

IBM, Nvidia in AI Data Pipeline, Processing, Storage Union

December 11, 2018

IBM and Nvidia today announced a new turnkey AI solution that combines IBM Spectrum Scale scale-out file storage with Nvidia’s GPU-based DGX-1 AI server to pr Read more…

By Doug Black

Mellanox Uses Univa to Extend Silicon Design HPC Operation to Azure

December 11, 2018

Call it a corollary to Murphy’s Law: When a system is most in demand, when end users are most dependent on the system performing as required, when it’s crunch time – that’s when the system is most likely to blow up. Or make you wait in line to use it. Read more…

By Doug Black

Topology Can Help Us Find Patterns in Weather

December 6, 2018

Topology--the study of shapes--seems to be all the rage. You could even say that data has shape, and shape matters. Shapes are comfortable and familiar concepts, so it is intriguing to see that many applications are being recast to use topology. For instance, looking for weather and climate patterns. Read more…

By James Reinders

Zettascale by 2035? China Thinks So

December 6, 2018

Exascale machines (of at least a 1 exaflops peak) are anticipated to arrive by around 2020, a few years behind original predictions; and given extreme-scale performance challenges are not getting any easier, it makes sense that researchers are already looking ahead to the next big 1,000x performance goal post: zettascale computing. Read more…

By Tiffany Trader

Robust Quantum Computers Still a Decade Away, Says Nat’l Academies Report

December 5, 2018

The National Academies of Science, Engineering, and Medicine yesterday released a report – Quantum Computing: Progress and Prospects – whose optimism about Read more…

By John Russell

Revisiting the 2008 Exascale Computing Study at SC18

November 29, 2018

A report published a decade ago conveyed the results of a study aimed at determining if it were possible to achieve 1000X the computational power of the the Read more…

By Scott Gibson

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

Google Releases Machine Learning “What-If” Analysis Tool

September 12, 2018

Training machine learning models has long been time-consuming process. Yesterday, Google released a “What-If Tool” for probing how data point changes affect a model’s prediction. The new tool is being launched as a new feature of the open source TensorBoard web application... Read more…

By John Russell

The Convergence of Big Data and Extreme-Scale HPC

August 31, 2018

As we are heading towards extreme-scale HPC coupled with data intensive analytics like machine learning, the necessary integration of big data and HPC is a curr Read more…

By Rob Farber

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This