Neocortex Will Be First-of-Its-Kind 800,000-Core AI Supercomputer

By Tiffany Trader

June 9, 2020

Recent HPCwire Featured Article – June 9, 2020

Pittsburgh Supercomputing Center (PSC – a joint research organization of Carnegie Mellon University and the University of Pittsburgh) has won a $5 million award from the National Science Foundation to build an AI supercomputer designed to accelerate AI research in pursuit of science, discovery and societal good. The new machine, called Neocortex, couples two Cerebras CS-1 AI servers with a shared-memory HPE Superdome Flex server. PSC will make Neocortex available to researchers across the Extreme Science and Engineering Discovery Environment (XSEDE) later this year.

Each Cerebras CS-1 is powered by one Cerebras Wafer Scale Engine (WSE) processor, which contains 400,000 AI-optimized cores implemented on a 46,225 square millimeter wafer with 1.2 trillion transistors. A front-end HPE Superdome Flex server will handle pre- and post-processing of data flowing in and out of the WSE processors. The HPE Superdome Flex is provisioned with 32 Intel Xeon CPUs, 24 terabytes of memory, 205 terabytes of flash storage, and 24 network interface cards.

The Superdome Flex connects to each CS-1 server via 12 100 gigabit Ethernet links, providing 1.2 terabits per second of bandwidth between the machines. That’s enough bandwidth to transfer 37 HD movies every second, said Nick Nystrom, chief scientist, Pittsburgh Supercomputing Center. The Neocortex team is considering implementing the network on a single switch to explore allowing the two CS-1s to interface directly at 1.2 terabits per second.

The WSE processor inside the CS-1 provides 9 petabytes per second of on-die memory bandwidth, equivalent to about a million HD movies per second, by Nystrom’s math.

Neocortex (named after the region of the brain responsible for higher-order brain functions, including language processing) is the first CS-1 installation funded by the NSF and the first publicly announced CS-1 cluster. Cerebras debuted its Wafer Scale Engine last August at Hot Chips and the CS-1 system unveiling followed at SC19 in November. The Department of Energy was the flagship customer; single-node CS-1 systems are deployed at Argonne National Lab and Lawrence Livermore National Lab.

Cerebras CS-1 system

Describing the impetus for the technology partnering, Nystrom said that PSC saw the opportunity to bring together the best of two worlds – “the extreme deep learning capability of the server CS-1, and the extreme shared memory of the Superdome Flex with HPE.”

“With shared memory, you don’t have to break your problem across many nodes. You don’t have to write MPI, and you don’t have to distribute your data structures. It’s just all there at high speed,” he added.

Both Cerebras and PSC expressed their expectation that the system will be able to take on a new class of problems, beyond what is available with traditional GPUs.

“We’re just scratching the surface of sort of a new class of AI models; we know of additional models that have been difficult to get running on graphics processing units and we are extremely eager to be partnering with pioneering researchers to show the world what these models might be able to do,” said Andrew Feldman, Cerebras cofounder and CEO. His list of target examples includes models with separable convolutions or models with native and induced sparsity, both coarse and fine grained, graph neural networks with irregular sparse connections, complex sequential models, and very large models where parallelism is desirable.

Even with current best-in-class PSC machines, like the GPU-based Bridges and Bridges-AI, research is constrained, said Paola Buitrago, principal investigator and PSC director of artificial intelligence and big data, noting “there is clearly a need for more compute, and fast interconnect and storage.”

“Artificial intelligence in 2012 started this kind of renaissance, thanks to neural networks being implemented on GPUs,” Buitrago shared in an interview with HPCwire. “GPUs absolutely do well with matrix operations, which is one of the main operations in our neural networks, but they weren’t designed for AI. Now with the Cerebras technology, we see a machine that is specifically designed for AI and for the potential optimizations in deep learning. We are excited to explore how it can speed up and transform what is currently happening in deep learning, allowing us to explore more and more ambitious science and reducing the time to curiosity.”

Buitrago expects Neocortex to be more powerful than the PSC Bridges-AI system by a few orders of magnitude. Providing further characterization of the system’s potential, Cerebras’ Feldman said the tuned system cluster with Cerebras’ wafer-scale cores and “the pre-processing machine from HPE” will have the power of 800-1,500 traditional GPUs, or “or about 20 racks worth of graphics processing with a single rack of Cerebras.”

Naturally, PSC will be putting Neocortex through its paces to see if this claim bears out. The Neocortex group at PSC has identified a number of benchmarks as being important to the community. “These were selected to demonstrate the capability of the system when it hits the ground, and the system will, of course, continue to mature over time,” said Nystrom, adding they will be evaluating the system with all the big complex networks that are very challenging right now, including LSTM.

“In addition to LSTM, we expect Neocortex will be very good at graph convolutional networks, important in all kinds of science,” said Nystrom. “And then over time across CNNs. So we’ll be using those initially, and we’ll be engaging early users to demonstrate scientific impact. That’s very important to the National Science Foundation.”

Buitrago said that their users who are bounded by current hardware are “in large part working on natural language processing and working with transformer type networks, including BERT and Megatron-LM, where the models are quite big with hundreds of millions and billions of parameters,” adding, “that’s a specific use case that we will be enabling with the Neocortex system.”

HPE Superdome Flex

The number of applications that need AI is growing, encompassing virtually all fields of science, many drawing on computer vision, text processing, and natural language processing. “We want to explore use cases that come specifically from science streaming needs,” said Buitrago. “So we are working with cosmology researchers, people doing image analysis for healthcare where they need to [handle] the high resolution images and also images in more than two dimensions and seeing how to address what are the best solutions for those specific use cases.”

The project partners are particularly enthused about harnessing AI for social good. Drug discovery, more accurate weather prediction, improved materials for increased solar energy generation and understanding large plant genomes to boost crop yields are just a few of the areas PSC expects will benefit from Neocortex as well as the upcoming Bridges-2 system (see slide below right for system details).

Details about Bridges-2 were presented (virtually) by Nick Nystrom at the HPC-AI Advisory Council Stanford Conference in April

Both Neocortex and Bridges-2 — also built with HPE — will be deployed in the fall. “We’re launching two supercomputers in the same season,” Nystrom declared. “PSC has never done that before.”

As with Bridges-2, 90 percent of time on Neocortex will be allocated through XSEDE. “We’ll have a long early user period, but there’s also discretionary capacity for industry to work with us too, to use the world’s most advanced AI capability to develop their capacity for industrial competitiveness and for translational research,” said Nystrom.

There’s also a concerted focus, via the NSF-funded OpenCompass program, to collect and document best practices for running artificial intelligence at scale and communicate those to the open science community. This dovetails with a mission of PSC to support non-traditional users (from history, philosophy, etc.) and users who are just getting started with AI.

Neocortex will support the most popular deep learning frameworks and will be federated with PSC’s new Bridges-2 supercomputer, creating “a singularly powerful and flexible ecosystem for high performance AI, data analytics, modeling and simulation.”

Both Neocortex and Bridges-2 will be available at no cost for research and education, and at cost-recovery rates for industry users.

PSC will present a tutorial on AI hardware at PEARC (July 26-30) and will be talking more about the Neocortex system and what to expect. More details will be forthcoming at https://pearc.acm.org/pearc20/.

Return to Solution Channel Homepage

Intel’s Vision for Exascale Computing

Follow @IntelHPC

Interactive Demos

Podcasts

Intel Resources

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

GTC21: Dell Building Cloud Native Supercomputers at U Cambridge and Durham

April 14, 2021

In conjunction with GTC21, Dell Technologies today announced new supercomputers at universities across DiRAC (Distributed Research utilizing Advanced Computing) in the UK with plans to explore use of Nvidia BlueField DPU Read more…

The Role and Potential of CPUs in Deep Learning

April 14, 2021

Deep learning (DL) applications have unique architectural characteristics and efficiency requirements. Hence, the choice of computing system has a profound impact on how large a piece of the DL pie a user can finally enj Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized i Read more…

Nvidia Aims Clara Healthcare at Drug Discovery, Imaging via DGX

April 12, 2021

Nvidia Corp. continues to expand its Clara healthcare platform with the addition of computational drug discovery and medical imaging tools based on its DGX A100 platform, related InfiniBand networking and its AGX develop Read more…

Nvidia Serves Up Its First Arm Datacenter CPU ‘Grace’ During Kitchen Keynote

April 12, 2021

Today at Nvidia’s annual spring GPU technology conference, held virtually once more due to the ongoing pandemic, the company announced its first ever Arm-based CPU, called Grace in honor of the famous American programmer Grace Hopper. Read more…

AWS Solution Channel

Volkswagen Passenger Cars Uses NICE DCV for High-Performance 3D Remote Visualization

 

Volkswagen Passenger Cars has been one of the world’s largest car manufacturers for over 70 years. The company delivers more than 6 million automobiles to global customers every year, from 50 production locations on five continents. Read more…

Nvidia Debuts BlueField-3 – Its Next DPU with Big Plans for an Expanded Role

April 12, 2021

Nvidia today announced its next generation data processing unit (DPU) – BlueField-3 – adding more substance to its evolving concept of the DPU as a full-fledged partner to CPUs and GPUs in delivering advanced computi Read more…

GTC21: Dell Building Cloud Native Supercomputers at U Cambridge and Durham

April 14, 2021

In conjunction with GTC21, Dell Technologies today announced new supercomputers at universities across DiRAC (Distributed Research utilizing Advanced Computing) Read more…

The Role and Potential of CPUs in Deep Learning

April 14, 2021

Deep learning (DL) applications have unique architectural characteristics and efficiency requirements. Hence, the choice of computing system has a profound impa Read more…

Nvidia Serves Up Its First Arm Datacenter CPU ‘Grace’ During Kitchen Keynote

April 12, 2021

Today at Nvidia’s annual spring GPU technology conference, held virtually once more due to the ongoing pandemic, the company announced its first ever Arm-based CPU, called Grace in honor of the famous American programmer Grace Hopper. Read more…

Nvidia Debuts BlueField-3 – Its Next DPU with Big Plans for an Expanded Role

April 12, 2021

Nvidia today announced its next generation data processing unit (DPU) – BlueField-3 – adding more substance to its evolving concept of the DPU as a full-fle Read more…

Nvidia’s Newly DPU-Enabled SuperPod Is a Multi-Tenant, Cloud-Native Supercomputer

April 12, 2021

At GTC 2021, Nvidia has announced an upgraded iteration of its DGX SuperPods, calling the new offering “the first cloud-native, multi-tenant supercomputer.” Read more…

Tune in to Watch Nvidia’s GTC21 Keynote with Jensen Huang – Recording Now Available

April 12, 2021

Join HPCwire right here on Monday, April 12, at 8:30 am PT to see the Nvidia GTC21 keynote from Nvidia’s CEO, Jensen Huang, livestreamed in its entirety. Hosted by HPCwire, you can click to join the Huang keynote on our livestream to hear Nvidia’s expected news and... Read more…

The US Places Seven Additional Chinese Supercomputing Entities on Blacklist

April 8, 2021

As tensions between the U.S. and China continue to simmer, the U.S. government today added seven Chinese supercomputing entities to an economic blacklist. The U Read more…

Habana’s AI Silicon Comes to San Diego Supercomputer Center

April 8, 2021

Habana Labs, an Intel-owned AI company, has partnered with server maker Supermicro to provide high-performance, high-efficiency AI computing in the form of new Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers

Contributors

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

The History of Supercomputing vs. COVID-19

March 9, 2021

The COVID-19 pandemic poses a greater challenge to the high-performance computing community than any before. HPCwire's coverage of the supercomputing response t Read more…

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

HPE Names Justin Hotard New HPC Chief as Pete Ungaro Departs

March 2, 2021

HPE CEO Antonio Neri announced today (March 2, 2021) the appointment of Justin Hotard as general manager of HPC, mission critical solutions and labs, effective Read more…

Microsoft, HPE Bringing AI, Edge, Cloud to Earth Orbit in Preparation for Mars Missions

February 12, 2021

The International Space Station will soon get a delivery of powerful AI, edge and cloud computing tools from HPE and Microsoft Azure to expand technology experi Read more…

HPCwire