Neocortex Will Be First-of-Its-Kind 800,000-Core AI Supercomputer

By Tiffany Trader

June 9, 2020

Recent HPCwire Featured Article – June 9, 2020

Pittsburgh Supercomputing Center (PSC – a joint research organization of Carnegie Mellon University and the University of Pittsburgh) has won a $5 million award from the National Science Foundation to build an AI supercomputer designed to accelerate AI research in pursuit of science, discovery and societal good. The new machine, called Neocortex, couples two Cerebras CS-1 AI servers with a shared-memory HPE Superdome Flex server. PSC will make Neocortex available to researchers across the Extreme Science and Engineering Discovery Environment (XSEDE) later this year.

Each Cerebras CS-1 is powered by one Cerebras Wafer Scale Engine (WSE) processor, which contains 400,000 AI-optimized cores implemented on a 46,225 square millimeter wafer with 1.2 trillion transistors. A front-end HPE Superdome Flex server will handle pre- and post-processing of data flowing in and out of the WSE processors. The HPE Superdome Flex is provisioned with 32 Intel Xeon CPUs, 24 terabytes of memory, 205 terabytes of flash storage, and 24 network interface cards.

The Superdome Flex connects to each CS-1 server via 12 100 gigabit Ethernet links, providing 1.2 terabits per second of bandwidth between the machines. That’s enough bandwidth to transfer 37 HD movies every second, said Nick Nystrom, chief scientist, Pittsburgh Supercomputing Center. The Neocortex team is considering implementing the network on a single switch to explore allowing the two CS-1s to interface directly at 1.2 terabits per second.

The WSE processor inside the CS-1 provides 9 petabytes per second of on-die memory bandwidth, equivalent to about a million HD movies per second, by Nystrom’s math.

Neocortex (named after the region of the brain responsible for higher-order brain functions, including language processing) is the first CS-1 installation funded by the NSF and the first publicly announced CS-1 cluster. Cerebras debuted its Wafer Scale Engine last August at Hot Chips and the CS-1 system unveiling followed at SC19 in November. The Department of Energy was the flagship customer; single-node CS-1 systems are deployed at Argonne National Lab and Lawrence Livermore National Lab.

Cerebras CS-1 system

Describing the impetus for the technology partnering, Nystrom said that PSC saw the opportunity to bring together the best of two worlds – “the extreme deep learning capability of the server CS-1, and the extreme shared memory of the Superdome Flex with HPE.”

“With shared memory, you don’t have to break your problem across many nodes. You don’t have to write MPI, and you don’t have to distribute your data structures. It’s just all there at high speed,” he added.

Both Cerebras and PSC expressed their expectation that the system will be able to take on a new class of problems, beyond what is available with traditional GPUs.

“We’re just scratching the surface of sort of a new class of AI models; we know of additional models that have been difficult to get running on graphics processing units and we are extremely eager to be partnering with pioneering researchers to show the world what these models might be able to do,” said Andrew Feldman, Cerebras cofounder and CEO. His list of target examples includes models with separable convolutions or models with native and induced sparsity, both coarse and fine grained, graph neural networks with irregular sparse connections, complex sequential models, and very large models where parallelism is desirable.

Even with current best-in-class PSC machines, like the GPU-based Bridges and Bridges-AI, research is constrained, said Paola Buitrago, principal investigator and PSC director of artificial intelligence and big data, noting “there is clearly a need for more compute, and fast interconnect and storage.”

“Artificial intelligence in 2012 started this kind of renaissance, thanks to neural networks being implemented on GPUs,” Buitrago shared in an interview with HPCwire. “GPUs absolutely do well with matrix operations, which is one of the main operations in our neural networks, but they weren’t designed for AI. Now with the Cerebras technology, we see a machine that is specifically designed for AI and for the potential optimizations in deep learning. We are excited to explore how it can speed up and transform what is currently happening in deep learning, allowing us to explore more and more ambitious science and reducing the time to curiosity.”

Buitrago expects Neocortex to be more powerful than the PSC Bridges-AI system by a few orders of magnitude. Providing further characterization of the system’s potential, Cerebras’ Feldman said the tuned system cluster with Cerebras’ wafer-scale cores and “the pre-processing machine from HPE” will have the power of 800-1,500 traditional GPUs, or “or about 20 racks worth of graphics processing with a single rack of Cerebras.”

Naturally, PSC will be putting Neocortex through its paces to see if this claim bears out. The Neocortex group at PSC has identified a number of benchmarks as being important to the community. “These were selected to demonstrate the capability of the system when it hits the ground, and the system will, of course, continue to mature over time,” said Nystrom, adding they will be evaluating the system with all the big complex networks that are very challenging right now, including LSTM.

“In addition to LSTM, we expect Neocortex will be very good at graph convolutional networks, important in all kinds of science,” said Nystrom. “And then over time across CNNs. So we’ll be using those initially, and we’ll be engaging early users to demonstrate scientific impact. That’s very important to the National Science Foundation.”

Buitrago said that their users who are bounded by current hardware are “in large part working on natural language processing and working with transformer type networks, including BERT and Megatron-LM, where the models are quite big with hundreds of millions and billions of parameters,” adding, “that’s a specific use case that we will be enabling with the Neocortex system.”

HPE Superdome Flex

The number of applications that need AI is growing, encompassing virtually all fields of science, many drawing on computer vision, text processing, and natural language processing. “We want to explore use cases that come specifically from science streaming needs,” said Buitrago. “So we are working with cosmology researchers, people doing image analysis for healthcare where they need to [handle] the high resolution images and also images in more than two dimensions and seeing how to address what are the best solutions for those specific use cases.”

The project partners are particularly enthused about harnessing AI for social good. Drug discovery, more accurate weather prediction, improved materials for increased solar energy generation and understanding large plant genomes to boost crop yields are just a few of the areas PSC expects will benefit from Neocortex as well as the upcoming Bridges-2 system (see slide below right for system details).

Details about Bridges-2 were presented (virtually) by Nick Nystrom at the HPC-AI Advisory Council Stanford Conference in April

Both Neocortex and Bridges-2 — also built with HPE — will be deployed in the fall. “We’re launching two supercomputers in the same season,” Nystrom declared. “PSC has never done that before.”

As with Bridges-2, 90 percent of time on Neocortex will be allocated through XSEDE. “We’ll have a long early user period, but there’s also discretionary capacity for industry to work with us too, to use the world’s most advanced AI capability to develop their capacity for industrial competitiveness and for translational research,” said Nystrom.

There’s also a concerted focus, via the NSF-funded OpenCompass program, to collect and document best practices for running artificial intelligence at scale and communicate those to the open science community. This dovetails with a mission of PSC to support non-traditional users (from history, philosophy, etc.) and users who are just getting started with AI.

Neocortex will support the most popular deep learning frameworks and will be federated with PSC’s new Bridges-2 supercomputer, creating “a singularly powerful and flexible ecosystem for high performance AI, data analytics, modeling and simulation.”

Both Neocortex and Bridges-2 will be available at no cost for research and education, and at cost-recovery rates for industry users.

PSC will present a tutorial on AI hardware at PEARC (July 26-30) and will be talking more about the Neocortex system and what to expect. More details will be forthcoming at https://pearc.acm.org/pearc20/.

Return to Solution Channel Homepage

Intel’s Vision for Exascale Computing

Follow @IntelHPC

Interactive Demos

Podcasts

Intel Resources

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Red Hat’s Disruption of CentOS Unleashes Storm of Dissent

January 22, 2021

Five weeks after angering much of the CentOS Linux developer community by unveiling controversial changes to the no-cost CentOS operating system, Red Hat has unveiled alternatives for affected users that give them severa Read more…

By Todd R. Weiss

China Unveils First 7nm Chip: Big Island

January 22, 2021

Shanghai Tianshu Zhaoxin Semiconductor Co. is claiming China’s first 7-nanometer chip, described as a leading-edge, general-purpose cloud computing chip based on a proprietary GPU architecture. Dubbed “Big Island Read more…

By George Leopold

HiPEAC Keynote: In-Memory Computing Steps Closer to Practical Reality

January 21, 2021

Pursuit of in-memory computing has long been an active area with recent progress showing promise. Just how in-memory computing works, how close it is to practical application, and what are some of the key opportunities a Read more…

By John Russell

HiPEAC’s Vision for a New Cyber Era, a ‘Continuum of Computing’

January 21, 2021

Earlier this week (Jan. 19), HiPEAC — the European Network on High Performance and Embedded Architecture and Compilation — published the 8th edition of the HiPEAC Vision, detailing an increasingly interconnected computing landscape where complex tasks are carried out across multiple... Read more…

By Tiffany Trader

Supercomputers Assist Hunt for Mysterious Axion Particle

January 21, 2021

In the 1970s, scientists theorized the existence of axions: particles born in the hearts of stars that, when exposed to a magnetic field, become light particles, and which may even comprise dark matter. To date, however, Read more…

By Oliver Peckham

AWS Solution Channel

Fire Dynamics Simulation CFD workflow on AWS

Modeling fires is key for many industries, from the design of new buildings, defining evacuation procedures for trains, planes and ships, and even the spread of wildfires. Read more…

Researchers Train Fluid Dynamics Neural Networks on Supercomputers

January 21, 2021

Fluid dynamics simulations are critical for applications ranging from wind turbine design to aircraft optimization. Running these simulations through direct numerical simulations, however, is computationally costly. Many Read more…

By Oliver Peckham

Red Hat’s Disruption of CentOS Unleashes Storm of Dissent

January 22, 2021

Five weeks after angering much of the CentOS Linux developer community by unveiling controversial changes to the no-cost CentOS operating system, Red Hat has un Read more…

By Todd R. Weiss

HiPEAC Keynote: In-Memory Computing Steps Closer to Practical Reality

January 21, 2021

Pursuit of in-memory computing has long been an active area with recent progress showing promise. Just how in-memory computing works, how close it is to practic Read more…

By John Russell

HiPEAC’s Vision for a New Cyber Era, a ‘Continuum of Computing’

January 21, 2021

Earlier this week (Jan. 19), HiPEAC — the European Network on High Performance and Embedded Architecture and Compilation — published the 8th edition of the HiPEAC Vision, detailing an increasingly interconnected computing landscape where complex tasks are carried out across multiple... Read more…

By Tiffany Trader

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

By Oliver Peckham

President-elect Biden Taps Eric Lander and Deep Team on Science Policy

January 19, 2021

Last Friday U.S. President-elect Joe Biden named The Broad Institute founding director and president Eric Lander as his science advisor and as director of the Office of Science and Technology Policy. Lander, 63, is a mathematician by training and distinguished life sciences... Read more…

By John Russell

Pat Gelsinger Returns to Intel as CEO

January 14, 2021

The Intel board of directors has appointed a new CEO. Intel alum Pat Gelsinger is leaving his post as CEO of VMware to rejoin the company that he parted ways with 11 years ago. Gelsinger will succeed Bob Swan, who will remain CEO until Feb. 15. Gelsinger previously spent 30 years... Read more…

By Tiffany Trader

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Intel ‘Ice Lake’ Server Chips in Production, Set for Volume Ramp This Quarter

January 12, 2021

Intel Corp. used this week’s virtual CES 2021 event to reassert its dominance of the datacenter with the formal roll out of its next-generation server chip, the 10nm Xeon Scalable processor that targets AI and HPC workloads. The third-generation “Ice Lake” family... Read more…

By George Leopold

Esperanto Unveils ML Chip with Nearly 1,100 RISC-V Cores

December 8, 2020

At the RISC-V Summit today, Art Swift, CEO of Esperanto Technologies, announced a new, RISC-V based chip aimed at machine learning and containing nearly 1,100 low-power cores based on the open-source RISC-V architecture. Esperanto Technologies, headquartered in... Read more…

By Oliver Peckham

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman I Read more…

By Oliver Peckham

NICS Unleashes ‘Kraken’ Supercomputer

April 4, 2008

A Cray XT4 supercomputer, dubbed Kraken, is scheduled to come online in mid-summer at the National Institute for Computational Sciences (NICS). The soon-to-be petascale system, and the resulting NICS organization, are the result of an NSF Track II award of $65 million to the University of Tennessee and its partners to provide next-generation supercomputing for the nation's science community. Read more…

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Aurora’s Troubles Move Frontier into Pole Exascale Position

October 1, 2020

Intel’s 7nm node delay has raised questions about the status of the Aurora supercomputer that was scheduled to be stood up at Argonne National Laboratory next year. Aurora was in the running to be the United States’ first exascale supercomputer although it was on a contemporaneous timeline with... Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

Leading Solution Providers

Contributors

Top500: Fugaku Keeps Crown, Nvidia’s Selene Climbs to #5

November 16, 2020

With the publication of the 56th Top500 list today from SC20's virtual proceedings, Japan's Fugaku supercomputer – now fully deployed – notches another win, Read more…

By Tiffany Trader

Texas A&M Announces Flagship ‘Grace’ Supercomputer

November 9, 2020

Texas A&M University has announced its next flagship system: Grace. The new supercomputer, named for legendary programming pioneer Grace Hopper, is replacing the Ada system (itself named for mathematician Ada Lovelace) as the primary workhorse for Texas A&M’s High Performance Research Computing (HPRC). Read more…

By Oliver Peckham

At Oak Ridge, ‘End of Life’ Sometimes Isn’t

October 31, 2020

Sometimes, the old dog actually does go live on a farm. HPC systems are often cursed with short lifespans, as they are continually supplanted by the latest and Read more…

By Oliver Peckham

Gordon Bell Special Prize Goes to Massive SARS-CoV-2 Simulations

November 19, 2020

2020 has proven a harrowing year – but it has produced remarkable heroes. To that end, this year, the Association for Computing Machinery (ACM) introduced the Read more…

By Oliver Peckham

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Intel Xe-HP GPU Deployed for Aurora Exascale Development

November 17, 2020

At SC20, Intel announced that it is making its Xe-HP high performance discrete GPUs available to early access developers. Notably, the new chips have been deplo Read more…

By Tiffany Trader

Nvidia-Arm Deal a Boon for RISC-V?

October 26, 2020

The $40 billion blockbuster acquisition deal that will bring chipmaker Arm into the Nvidia corporate family could provide a boost for the competing RISC-V architecture. As regulators in the U.S., China and the European Union begin scrutinizing the impact of the blockbuster deal on semiconductor industry competition and innovation, the deal has at the very least... Read more…

By George Leopold

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing a Read more…

By Oliver Peckham

Do NOT follow this link or you will be banned from the site!
Share This