The Ice Lake Top 10

By Trish Damkroger, Vice President and General Manager, High Performance Computing Group, Intel Corporation

November 16, 2020

New Intel® Xeon® Scalable processor-based servers are right around the corner. Code named “Ice Lake,” the upcoming 3rd Gen Xeon Scalable processors deliver significant performance and feature improvements for the HPC community. Here are 10 key highlights:

 

1) Sunny Cove Core Microarchitecture

Let’s start with the Sunny Cove core microarchitecture.  Ice Lake with Sunny Cove delivers an estimated 18% increase in instructions per clock (IPC) on integer and floating rate benchmarks1 at identical frequency, core count and memory bandwidth as the previous generation.  This new architecture is manufactured using Intel’s advanced 10nm process technology and includes increased L1 and L2 cache sizes as well as single thread execution enhancements. Ice Lake also includes new data security and platform integrity features such as Total Memory Encryption and support for Platform Firmware Resilience, in addition to new Intel Software Guard Extensions (see #5 below).

Be sure to catch Irma Esmer’s Tech Talk on “A Closer Look at Ice Lake” for details.

 

2) Increased Memory Channels

With a jump from six to eight DDR4 memory channels, Ice Lake improves Xeon’s baseline memory capacity and bandwidth to deliver a performance boost for memory-hungry workloads in industries like finance, manufacturing, and life sciences. Coupled with the Sunny Cove core’s architectural improvements, Ice Lake delivers an estimated 38% increase in performance on the SPEC floating point rate benchmark, at identical core count and frequency as the prior-generation server. 2

We’ll provide more performance data at Ice Lake launch in 2021.

 

3) Performance

While we won’t fully disclose Ice Lake’s full specifications and performance results until launch, we’re already seeing competitive advantage for several key benchmarks and applications.  At just half the cores, Ice Lake is expected to outperform 64-core AMD Rome systems for Monte Carlo, LAMMPS and NAMD3. Get additional details in my SC20 Executive Keynote video!

 

4) AVX-512

Intel AVX-512 instructions deliver double the flops per cycle versus AVX2. HPC users know this can significantly improve performance for applications in fields like molecular dynamics, options pricing, computational fluid dynamics and crash simulation. With Ice Lake’s boost in instructions per clock, this feature has even greater impact.

 

5) Speed Select Technology

Intel Speed Select Technology (SST) is like getting 3 processors in one. Users can specify up to three core/frequency/power configurations to help optimize performance per watt for the application being run. So you can adjust core counts and frequencies to match the needs of each workload. Intel SST also gives the hardware control over CPU frequency to allow continuous, precise matching of the power consumption to the workload’s needs.

 

6) Intel SGX

Intel’s Software Guard Extensions (SGX) provides a critical defense layer, giving applications a hardened enclave in memory for sensitive data and application code. This trusted execution environment can help to provide an extra level of data security and code integrity, particularly useful when sharing sensitive or proprietary data in multi-party federated analytics, modeling and simulation.

 

7) Intel Deep Learning Boost

Intel Xeon Scalable processors are the only mainstream server CPUs with built-in AI acceleration. Intel Deep Learning Boost in Ice Lake makes converged HPC and AI workloads much more efficient, with specialized instructions for codes benefiting from reduced or mixed precision numerics. In just one example from current generation Intel Xeni , we saw up to 9x better performance than competition for inference performance4.

 

8) Intel Optane Persistent Memory 200 Series

Support for Intel® Optane™ persistent memory 200 series provides larger memory pools and persistence—a game changer for data-intensive workloads from exascale storage to financial modeling. The 200 series delivers on average 25% more memory bandwidth than the previous generation and total per socket memory of 6 terabytes when combining DRAM and persistent memory.

 

9) PCIe Gen 4

With Ice Lake, Xeon Scalable processors now support PCIe Gen 4, doubling the I/O bandwidth performance compared to Gen 3. PCIe Gen 4 speeds data movement for FPGA and GPU accelerators that power machine and deep learning applications. It offers lower latency and higher bandwidth for next-generation Ethernet and NVMe storage.

 

10) Customers

And finally, what we love most about Ice Lake is how it will help our users and partners do great things, from climate science to the cloud.

We just announced this week that the Korean Meteorological Association (KMA) will be adopting Ice Lake for its Supercomputer No. 5 in January.  This system will be eight times faster than KMA’s current supercomputer, essential for the services KMA delivers, including weather prediction, climate change assessment, and earthquake and marine studies.

In addition, over the past week, Osaka University, the University of Tokyo, and the National Institute of Advanced Industrial Science and Technology (AIST) have all announced their choice of Ice Lake for upcoming systems.

Max Planck Computing and Data Facility has also chosen Ice Lake for their new Raven system, enabling groundbreaking research in physics, bioscience, theoretical chemistry and beyond.

We were also happy to see Oracle Cloud Infrastructure adopting Ice Lake to power HPC instances – you can read more about that here.

Stay tuned for more Ice Lake customer news as we get closer to launch in 2021.

 



1- GEOMEAN based on SIR and at the same core count, frequency and memory bandwidth when comparing to prior generation. Other workload IPC measurements may vary.  Per core results have been estimated based on pre-production tests at identical frequency and memory bandwidth per core as of October 2020.

2- GEOMEAN based on SIR and at the same core count and frequency when comparing to prior generation. Other workload IPC measurements may vary.  Per core results have been estimated based on pre-production tests as of Sept 2020.

3- NAMD STMV (1.2x performance advantage): 2S 3rd Gen Intel Xeon Scalable processor (Ice Lake): 1-node, 2x pre-production 3rd Gen Intel Xeon Scalable processor (Ice Lake – 2.2GHz, 32cores per socket), Intel reference platform, 256GB, 16x16GB 3200MHz DDR4, HT=on, TURBO=on, SNC=disabled, SSDSC2KG96 960GB, BIOS SE5C6200.86B.0017.D92.2007150417, microcode 0x8c000140, CentOS Linux 7.8, 3.10.0-1127.18.2.el7.crt1.x86_64, compiled with Intel C Compiler 2020u2, Intel MKL, NAMD: 2_15-Alpha1, tested by Intel on 9-17-2020.  2S AMD EPYC 7742: 1-node 2x AMD EPYC 7742 (2.25GHz, 64cores per socket), Supermicro platform, 16x16GB 3200MHz DDR4, SMT on, Boost on, NPS=4, SSDSC2KG96 960GB, BIOS2.0b dt 11/15/2019, microcode 0x8301025, CentOS Linux 7.7.1908, 3.10.0-1127.13.1.el7.crt1.x86_64, compiled with AOCC 2.2, Intel MKL, NAMD: 2_15-Alpha1, tested by Intel on 9-10-2020. Monte Carlo (1.3x performance advantage): 2S 3rd Gen  Intel Xeon Scalable processor (Ice Lake): 1-node, 2x pre-production 3rd Gen Intel Xeon Scalable processor (Ice Lake – 2.2GHz, 32cores per socket), Intel reference platform, 256GB, 16x16GB 3200MHz DDR4, HT=on, TURBO=on, SNC=disabled, SSDSC2KG96 960GB, BIOS SE5C6200.86B.0017.D92.2007150417, microcode 0x8c000140, CentOS Linux 7.8, 3.10.0-1127.18.2.el7.crt1.x86_64, compiled with Intel C Compiler 2020u2, Intel MKL 2020u2, Monte Carlo FSI Kernel workload developed by Intel, tested by Intel on 10-9-2020. 2S AMD EPYC 7742: 1-node 2x AMD EPYC 7742 (2.25GHz, 64cores per socket), Supermicro platform, 16x16GB 3200MHz DDR4, SMT on, Boost on, NPS=4, SSDSC2KG96 960GB, BIOS2.0b dt 11/15/2019, microcode 0x8301025, CentOS Linux 7.7.1908, 3.10.0-1127.13.1.el7.crt1.x86_64, compiled with Intel C Compiler 2020u2, Intel MKL 2020u2, Monte Carlo FSI Kernel workload developed by Intel, tested by Intel on 7-17-2020. LAMMPS (Geomean of Atomic Fluid, Copper, Liquid Crystal, Polyethylene, Protein, Stillinger-Weber, Tersoff, and Water) (1.2x performance advantage): 2S 3rd Gen  Intel Xeon Scalable processor (Ice Lake): 1-node, 2x pre-production 3rd Gen Intel Xeon Scalable processor (Ice Lake – 2.2GHz, 32cores per socket), Intel reference platform, 256GB, 16x16GB 3200MHz DDR4, HT=on, TURBO=on, SNC=disabled, SSDSC2KG96 960GB, BIOS SE5C6200.86B.0017.D92.2007150417, microcode 0x8c000140, CentOS Linux 7.8, 3.10.0-1127.18.2.el7.crt1.x86_64, compiled with Intel C Compiler 2020u2, Intel MKL 2020u2, LAMMPS 03/03/2020, tested by Intel on 10-9-20202S AMD EPYC 7742: 1-node 2x AMD EPYC 7742 (2.25GHz, 64cores per socket), Supermicro platform, 16x16GB 3200MHz DDR4, SMT on, Boost on, NPS=4, SSDSC2KG96 960GB, BIOS2.0b dt 11/15/2019, microcode 0x8301025, CentOS Linux 7.7.1908, 3.10.0-1127.13.1.el7.crt1.x86_64, compiled with AOCC 2.2, LAMMPS 07/21/2020, tested by Intel on 8-19-2020.

4- 9x AI: With Intel Xeon processor’s built-in workload acceleration tapping Intel Deep Learning Boost and AVX 512 technology, we are seeing advantages of up to 9x AI inference performance vs. competitor CPUs.. AI Inference: 9X performance achieved on MobileNet v1 on PyTorch framework on Xeon AP processor  (Xeon 9282)  Int 8 vs. competitor CPU (AMD 7742). Tested by Intel as of 11/13/2019. 2 socket Intel® Xeon® Platinum 9282 processors (56C), HT ON, Turbo ON, Total Memory 384 GB (24 slots, 16GB, 2934Mhz), BIOS: SE5C620.86B.2X.01.0053.081920190637, Microcode: 0x500002c, Ubuntu 19.10, Kernel 5.3.0-22-generic, SSD 1x Micron_5100_MTFDDAV480TBY 447G, Intel® Deep Learning Framework: PyTorch (master + PR for MLPerf)*git fetch origin pull/25235/head:mlperf; git checkout mlperf, Compiler GCC 9.2.1.20191008, MobileNetV1, Batch Size=64, Iterations: 1000, Datatype: INT8 vs Baseline: AMD EPYC™ 7742 processor configuration: Tested by Intel as of 11/13/2019. 2-socket AMD EPYC™ 7742 “Rome” processors (64C), HT ON, Turbo ON, Total Memory 512 GB (16 slots, 32GB, 3200Mhz), BIOS: 2.0, Microcode 0x830101C, Ubuntu 19.10, Kernel 5.3.0-22-generic, SSD 1x Intel® SSD D3-S4610 1.8T, Deep Learning Framework: PyTorch (master + PR for MLPerf) *git fetch origin pull/25235/head:mlperf; git checkout mlperf, GCC 9.2.1.20191008, MobileNetV1, Batch Size=64, Iterations: 1000, Datatype: FP32. See https://www.intel.com/content/www/us/en/benchmarks/2019-xeon-scalable-benchmark.html claim 33


All product plans and roadmaps are subject to change without notice.

Intel technologies may require enabled hardware, software or service activation.

Performance result estimates are as of dates shown in configurations and may not reflect all publicly available updates.  No product or component can be absolutely secure.

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex​.

Intel Advanced Vector Extensions (Intel AVX) provides higher throughput to certain processor operations. Due to varying processor power characteristics, utilizing AVX instructions may cause a) some parts to operate at less than the rated frequency and b) some parts with Intel Turbo Boost Technology 2.0 to not achieve any or maximum turbo frequencies. Performance varies depending on hardware, software, and system configuration and you can learn more at http://www.intel.com/go/turbo.

Code names are used by Intel to identify products, technologies, or services that are in development and not publicly available. These are not “commercial” names and not intended to function as trademarks.

Results have been estimated or simulated.

Your costs and results may vary.

Intel does not control or audit third-party data.  You should consult other sources to evaluate accuracy.

© Intel Corporation . Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.

Return to Solution Channel Homepage

Intel’s Vision for Exascale Computing

Follow @IntelHPC

Interactive Demos

Podcasts

Intel Resources

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

NIST/Xanadu Researchers Report Photonic Quantum Computing Advance

March 3, 2021

Researchers from the National Institute of Standards and Technology (NIST) and Xanadu, a young Canada-based quantum computing company, have reported developing a full-stack, photonic quantum computer able to carry out th Read more…

By John Russell

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and even to this day, the largest climate models are heavily con Read more…

By Oliver Peckham

HPE Names Justin Hotard New HPC Chief as Pete Ungaro Departs

March 2, 2021

HPE CEO Antonio Neri announced today (March 2, 2020) the appointment of Justin Hotard as general manager of HPC, mission critical solutions and labs, effective immediately. Hotard replaces long-time Cray exec Pete Ungaro Read more…

By Tiffany Trader

ORNL’s Jeffrey Vetter on How IRIS Runtime will Help Deal with Extreme Heterogeneity

March 2, 2021

Jeffery Vetter is a familiar figure in HPC. Last year he became one of the new section heads in a reorganization at Oak Ridge National Laboratory. He had been founding director of ORNL's Future Technologies Group which i Read more…

By John Russell

HPC Career Notes: March 2021 Edition

March 1, 2021

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it’s a promotion, new company hire, or even an accolade, we’ Read more…

By Mariana Iriarte

AWS Solution Channel

Moderna Accelerates COVID-19 Vaccine Development on AWS

Marcello Damiani, Chief Digital and Operational Excellence Officer at Moderna, joins Todd Weatherby, Vice President of AWS Professional Services Worldwide, for a discussion on developing Moderna’s COVID-19 vaccine, scaling systems to enable global distribution, and leveraging cloud technologies to accelerate processes. Read more…

Supercomputers Enable First Holistic Model of SARS-CoV-2, Showing Spike Proteins Move in Tandem

February 28, 2021

Most models of SARS-CoV-2, the coronavirus that causes COVID-19, hone in on key features of the virus: for instance, the spike protein. Some of this is attributable to the relative importance of those features, but most Read more…

By Oliver Peckham

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

By Oliver Peckham

HPE Names Justin Hotard New HPC Chief as Pete Ungaro Departs

March 2, 2021

HPE CEO Antonio Neri announced today (March 2, 2020) the appointment of Justin Hotard as general manager of HPC, mission critical solutions and labs, effective Read more…

By Tiffany Trader

ORNL’s Jeffrey Vetter on How IRIS Runtime will Help Deal with Extreme Heterogeneity

March 2, 2021

Jeffery Vetter is a familiar figure in HPC. Last year he became one of the new section heads in a reorganization at Oak Ridge National Laboratory. He had been f Read more…

By John Russell

HPC Career Notes: March 2021 Edition

March 1, 2021

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it Read more…

By Mariana Iriarte

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

By Oliver Peckham

Japan to Debut Integrated Fujitsu HPC/AI Supercomputer This Spring

February 25, 2021

The integrated Fujitsu HPC/AI Supercomputer, Wisteria, is coming to Japan this spring. The University of Tokyo is preparing to deploy a heterogeneous computing Read more…

By Tiffany Trader

Xilinx Launches Alveo SN1000 SmartNIC

February 24, 2021

FPGA vendor Xilinx has debuted its latest SmartNIC model, the Alveo SN1000, with integrated “composability” features that allow enterprise users to add their own custom networking functions to supplement its built-in networking. By providing deep flexibility... Read more…

By Todd R. Weiss

ASF Keynotes Showcase How HPC and Big Data Have Pervaded the Pandemic

February 24, 2021

Last Thursday, a range of experts joined the Advanced Scale Forum (ASF) in a rapid-fire roundtable to discuss how advanced technologies have transformed the way humanity responded to the COVID-19 pandemic in indelible ways. The roundtable, held near the one-year mark of the first... Read more…

By Oliver Peckham

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Esperanto Unveils ML Chip with Nearly 1,100 RISC-V Cores

December 8, 2020

At the RISC-V Summit today, Art Swift, CEO of Esperanto Technologies, announced a new, RISC-V based chip aimed at machine learning and containing nearly 1,100 low-power cores based on the open-source RISC-V architecture. Esperanto Technologies, headquartered in... Read more…

By Oliver Peckham

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman I Read more…

By Oliver Peckham

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

NICS Unleashes ‘Kraken’ Supercomputer

April 4, 2008

A Cray XT4 supercomputer, dubbed Kraken, is scheduled to come online in mid-summer at the National Institute for Computational Sciences (NICS). The soon-to-be petascale system, and the resulting NICS organization, are the result of an NSF Track II award of $65 million to the University of Tennessee and its partners to provide next-generation supercomputing for the nation's science community. Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Top500: Fugaku Keeps Crown, Nvidia’s Selene Climbs to #5

November 16, 2020

With the publication of the 56th Top500 list today from SC20's virtual proceedings, Japan's Fugaku supercomputer – now fully deployed – notches another win, Read more…

By Tiffany Trader

Gordon Bell Special Prize Goes to Massive SARS-CoV-2 Simulations

November 19, 2020

2020 has proven a harrowing year – but it has produced remarkable heroes. To that end, this year, the Association for Computing Machinery (ACM) introduced the Read more…

By Oliver Peckham

Leading Solution Providers

Contributors

Texas A&M Announces Flagship ‘Grace’ Supercomputer

November 9, 2020

Texas A&M University has announced its next flagship system: Grace. The new supercomputer, named for legendary programming pioneer Grace Hopper, is replacing the Ada system (itself named for mathematician Ada Lovelace) as the primary workhorse for Texas A&M’s High Performance Research Computing (HPRC). Read more…

By Oliver Peckham

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

By Oliver Peckham

Intel Xe-HP GPU Deployed for Aurora Exascale Development

November 17, 2020

At SC20, Intel announced that it is making its Xe-HP high performance discrete GPUs available to early access developers. Notably, the new chips have been deplo Read more…

By Tiffany Trader

Intel Teases Ice Lake-SP, Shows Competitive Benchmarking

November 17, 2020

At SC20 this week, Intel teased its forthcoming third-generation Xeon "Ice Lake-SP" server processor, claiming competitive benchmarking results against AMD's second-generation Epyc "Rome" processor. Ice Lake-SP, Intel's first server processor with 10nm technology... Read more…

By Tiffany Trader

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

By Tiffany Trader

It’s Fugaku vs. COVID-19: How the World’s Top Supercomputer Is Shaping Our New Normal

November 9, 2020

Fugaku is currently the most powerful publicly ranked supercomputer in the world – but we weren’t supposed to have it yet. The supercomputer, situated at Japan’s Riken scientific research institute, was scheduled to come online in 2021. When the pandemic struck... Read more…

By Oliver Peckham

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire