Building an Effective Financial Fraud Detection Solution using Cloud-Based, GPU-Accelerated Systems

October 25, 2022

Tracking payment fraud, money laundering, insurance fraud and identity fraud is an expensive and time-consuming process due to the large volumes of financial fraud data which must be analyzed.

Advances in digital banking, online account opening, open banking and cryptocurrency make it difficult to track the source of funds and locate fraud. Financial organizations are increasingly using cloud-based, GPU-accelerated artificial intelligence (AI) and machine learning (ML) predictive analysis models to identify fraud transactions quickly and accurately.

Traditional fraud tracking methods are ineffective tools

Many organizations use legacy CPU-based processing infrastructure and Transactions Monitoring Systems (TMS) to identify suspicious transactions that may involve fraud or legitimate proceeds used for illegal purposes. These system are typically antiquated rules-based systems that rely on structured queries that aren’t precise and can generate high false positive alerts.

Building an effective AI financial fraud solution

AI is specifically suited to detect financial fraud because it picks up patterns that humans can’t easily interpret. Financial services organizations are increasingly using AI and ML predictive data models running on modern infrastructure to analyze financial or account data to help locate anomalies that indicate evidence of potential fraud.

Moving to a cloud-based GPU-accelerated infrastructure provides faster processing and training for ML inference models needed to analyze the massive amounts of data to locate fraudulent finance data. As described in this article, American Express uses and NVIDIA GPUs and long short-term memory networks, or LSTMs, running AI anomaly fraud detection on tens of millions of daily transactions. Using the NVIDIA solution, American Express saw a 50x improvement over CPU processing.

According to this IDC report, Worldwide CEO Survey, 2022: Industry Perspectives, August 2022, “44.6 percent of financial services respondents consider driving more revenue-generating activities the most critical technology initiative for their organizations, while 41.1 percent are focused on delivering digital services faster and accelerating the shift to the cloud.”

NVIDIA’s “State of AI in Financial Services” survey found that the use of AI for fraud detection for know your customer (KYC) and anti-money laundering (AML) compliance was one of the top AI solutions implemented between 2021 and 2022.

Technology partners provide cloud-based, GPU-accelerated AI fraud detection solutions

Microsoft and NVIDIA have a long history of working together to support financial institutions in providing technology to support AI and ML solutions used in financial fraud detection. Using Microsoft Azure cloud and the NVIDIA AI platform provides scalable, accelerated resources needed to run AI/ML algorithms, routines, and libraries.

The partnership between Microsoft and NVIDIA makes NVIDIA’s powerful GPU acceleration available to financial institutions. The Azure Machine Learning service integrates the NVIDIA open-source RAPIDS software library that allows machine learning users to accelerate their pipelines with NVIDIA GPUs. The NVIDIA TensorRT acceleration library was added to ONNX Runtime to speed deep learning inferencing. Azure supports NVIDIA’s T4 Tensor Core Graphics Processing Units (GPUs), which are optimized for the cost-effective deployment of machine learning inferencing or analytical workloads.

Microsoft cloud-based solutions for financial fraud detection

Moving to the Microsoft Azure cloud solution provides financial institutions with a complete set of computing, networking, and storage resources integrated with workload services capable of handling the requirements of AI algorithm processing. Organizations can use Azure Stream Analytics to do serverless real-time analytics of financial data from existing repositories, so that fraud prevention teams can access that data in real-time. Automating processes with technologies like Microsoft Power Platform aids in catching fraudulent activities as they occur.

Summary

Financial institutions are required to track and report potential financial fraud in areas such as money laundering or insurance fraud transactions. Using AL and ML algorithms running on GPU-accelerated cloud-based solutions can analyze patterns in financial data to accurately identify fraudulent transactions. This helps financial organizations save staff time, and can aid in reducing fines for non-compliance in identifying financial fraud transactions.

Return to Solution Channel Homepage
Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia Touts Strong Results on Financial Services Inference Benchmark

February 3, 2023

The next-gen Hopper family may be on its way, but that isn’t stopping Nvidia’s popular A100 GPU from leading another benchmark on its way out. This time, it’s the STAC-ML inference benchmark, produced by the Securi Read more…

Quantum Computing Firm Rigetti Faces Delisting

February 3, 2023

Quantum computing companies are seeing their market caps crumble as investors patiently await out the winner-take-all approach to technology development. Quantum computing firms such as Rigetti Computing, IonQ and D-Wave went public through mergers with blank-check companies in the last two years, with valuations at the time of well over $1 billion. Now the market capitalization of these companies are less than half... Read more…

US and India Strengthen HPC, Quantum Ties Amid Tech Tension with China

February 2, 2023

Last May, the United States and India announced the “Initiative on Critical and Emerging Technology” (iCET), aimed at expanding the countries’ partnerships in strategic technologies and defense industries across th Read more…

Pittsburgh Supercomputing Enables Transparent Medicare Outcome AI

February 2, 2023

Medical applications of AI are replete with promise, but stymied by opacity: with lives on the line, concerns over AI models’ often-inscrutable reasoning – and as a result, possible biases embedded in those models Read more…

Europe’s LUMI Supercomputer Has Officially Been Accepted

February 1, 2023

“LUMI is officially here!” proclaimed the headline of a blog post written by Pekka Manninen, director of science and technology for CSC, Finland’s state-owned IT center. The EuroHPC-organized supercomputer’s most Read more…

AWS Solution Channel

Shutterstock 2069893598

Cost-effective and accurate genomics analysis with Sentieon on AWS

This blog post was contributed by Don Freed, Senior Bioinformatics Scientist, and Brendan Gallagher, Head of Business Development at Sentieon; and Olivia Choudhury, PhD, Senior Partner Solutions Architect, Sujaya Srinivasan, Genomics Solutions Architect, and Aniket Deshpande, Senior Specialist, HPC HCLS at AWS. Read more…

Microsoft/NVIDIA Solution Channel

Shutterstock 1453953692

Microsoft and NVIDIA Experts Talk AI Infrastructure

As AI emerges as a crucial tool in so many sectors, it’s clear that the need for optimized AI infrastructure is growing. Going beyond just GPU-based clusters, cloud infrastructure that provides low-latency, high-bandwidth interconnects and high-performance storage can help organizations handle AI workloads more efficiently and produce faster results. Read more…

Intel’s Gaudi3 AI Chip Survives Axe, Successor May Combine with GPUs

February 1, 2023

Intel's paring projects and products amid financial struggles, but AI products are taking on a major role as the company tweaks its chip roadmap to account for more computing specifically targeted at artificial intellige Read more…

Quantum Computing Firm Rigetti Faces Delisting

February 3, 2023

Quantum computing companies are seeing their market caps crumble as investors patiently await out the winner-take-all approach to technology development. Quantum computing firms such as Rigetti Computing, IonQ and D-Wave went public through mergers with blank-check companies in the last two years, with valuations at the time of well over $1 billion. Now the market capitalization of these companies are less than half... Read more…

US and India Strengthen HPC, Quantum Ties Amid Tech Tension with China

February 2, 2023

Last May, the United States and India announced the “Initiative on Critical and Emerging Technology” (iCET), aimed at expanding the countries’ partnership Read more…

Intel’s Gaudi3 AI Chip Survives Axe, Successor May Combine with GPUs

February 1, 2023

Intel's paring projects and products amid financial struggles, but AI products are taking on a major role as the company tweaks its chip roadmap to account for Read more…

Roadmap for Building a US National AI Research Resource Released

January 31, 2023

Last week the National AI Research Resource (NAIRR) Task Force released its final report and roadmap for building a national AI infrastructure to include comput Read more…

PFAS Regulations, 3M Exit to Impact Two-Phase Cooling in HPC

January 27, 2023

Per- and polyfluoroalkyl substances (PFAS), known as “forever chemicals,” pose a number of health risks to humans, with more suspected but not yet confirmed Read more…

Multiverse, Pasqal, and Crédit Agricole Tout Progress Using Quantum Computing in FS

January 26, 2023

Europe-based quantum computing pioneers Multiverse Computing and Pasqal, and global bank Crédit Agricole CIB today announced successful conclusion of a 1.5-yea Read more…

Critics Don’t Want Politicians Deciding the Future of Semiconductors

January 26, 2023

The future of the semiconductor industry was partially being decided last week by a mix of politicians, policy hawks and chip industry executives jockeying for Read more…

Riken Plans ‘Virtual Fugaku’ on AWS

January 26, 2023

The development of a national flagship supercomputer aimed at exascale computing continues to be a heated competition, especially in the United States, the Euro Read more…

Leading Solution Providers

Contributors

SC22 Booth Videos

AMD @ SC22
Altair @ SC22
AWS @ SC22
Ayar Labs @ SC22
CoolIT @ SC22
Cornelis Networks @ SC22
DDN @ SC22
Dell Technologies @ SC22
HPE @ SC22
Intel @ SC22
Intelligent Light @ SC22
Lancium @ SC22
Lenovo @ SC22
Microsoft and NVIDIA @ SC22
One Stop Systems @ SC22
Penguin Solutions @ SC22
QCT @ SC22
Supermicro @ SC22
Tuxera @ SC22
Tyan Computer @ SC22
  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire