Technology Partners Make Developing Cloud-Based, GPU-Accelerated AI Recommender Systems Easier

August 23, 2022

Financial services organizations have large volumes of customer data that includes account balances, payment transactions and information such as customer FICO scores, and credit history. Organizations are increasingly using cloud-based, GPU-accelerated artificial intelligence (AI) and machine learning (ML) predictive analysis recommender systems to make personalized suggestions to customers. However, creating and maintaining recommender systems is a complex and time-consuming task. As technology partners, Microsoft and NVIDIA have customized tools to help develop and maintain recommender systems.

What is a recommender system?

Recommendation systems, also called recommendation engines, are AI systems used to suggest a product, service, or information to a user. Recommendation systems are based on user characteristics, preferences, history, and data, so the recommendation is always personalized for a particular customer or user.

Creating and maintaining recommender systems is complex

Historically, developing and maintaining recommender systems requires financial services staff with special skills such as data scientists or developers. Finding and maintaining the right recommender algorithms can be a daunting task. Many financial organizations have legacy infrastructure, limited budgets for AI development and staff that lack data science skills needed to implement AI recommender algorithms. This Forrester report research shows that “roughly two-thirds (64%) of technical decision-makers are not fully confident in their ability to meet their organization’s AI goals based on current resources.”

There are a number of tasks required for setting up and testing a recommender system ML model to meet the specific needs of an organization. These tasks include data preparation, building or selecting a recommender algorithm model, tuning, training to optimize the model, and finally implementing the model. A first step is collecting, retrieving, and organizing data on customers and the financial products or services they are using. Once data is located, it must be collated into a standardized format for use in AI or ML algorithms.

There are a number of existing recommender algorithms available in repositories such as GitHub. As described in this Microsoft article, “When asked to build a recommender system, data scientists will often turn to more commonly known algorithms to alleviate the time and costs needed to choose and test more state-of-the-art algorithms. Selecting the right recommender algorithm from scratch and implementing new models for recommender systems can be costly as they require ample time for training and testing as well as large amounts of compute power.”

Building an effective AI recommender solution using cloud-based GPU-accelerated solutions

Training ML recommender models requires huge computational resources. Legacy infrastructure with CPU-based processing cannot handle the processing speeds required. Moving to a GPU-based infrastructure provides much faster processing and training for ML inference models and can help increase an organization’s return on investment (ROI).

According to the Forrester survey, “What organizations need are prebuilt, configurable AI cloud services. Cloud AI services allow developers to access a depth of AI capabilities via APIs for fueling application innovation without requiring data science experience.” Moving to a cloud-based AI solution that includes pre-built AI models, results in faster deployment time, and gives organizations access to AI models that have been responsibly built and tested.

Using cloud-based, GPU accelerated AI and ML solutions removes barriers financial service institutions face in developing AI and ML recommender algorithms. NVIDIA’s “State of AI in Financial Services survey” found that “companies are experiencing significant financial benefit from enabling AI across the enterprise. Over 30 percent of respondents stated that AI increases annual revenues by more than 10 percent, while over 25 percent stated that AI is reducing annual costs by more than 10 percent.”

Technology partners provide tools to help develop cloud-based, GPU-accelerated AI recommender solutions

Microsoft and NVIDIA have a long history of working together and providing technology to support financial institutions in creating and implementing AI recommender systems. Using Microsoft Azure cloud, and the NVIDIA AI platform provides scalable, accelerated resources needed to run AI/ML algorithms, routines, and libraries.

The partnership between Microsoft and NVIDIA makes powerful GPU acceleration available to financial institutions. The Azure Machine Learning service integrates the NVIDIA open-source RAPIDS software library that allows machine learning users to accelerate their pipelines with NVIDIA GPUs. The NVIDIA TensorRT acceleration library was added to ONNX Runtime to speed deep learning inferencing. Azure supports NVIDIA’s T4 Tensor Core Graphics Processing Units (GPUs), and the NVIDIA DGX H100 system which are optimized for the cost-effective deployment of machine learning inferencing or analytical workloads.

NVIDIA Merlin framework designed for recommender workflows

NVIDIA Merlin provides tools to build high-performing recommender systems at scale. Merlin includes libraries, methods, and tools that streamline the building of recommender systems. Merlin components and capabilities are optimized to support the retrieval, filtering, scoring, and ordering of hundreds of terabytes of data, all accessible through APIs. NVIDIA Merlin’s open-source components simplify building and deploying a production-quality recommender system pipeline. Capital One developed a state-of-the-art personalized recommendation architecture powered by the ALBERT Transformer Algorithm and NVIDIA’s Merlin Transformers4Rec that achieves superior performance in providing relevant ads to repeat visitors of the Capital One homepage. Register for NVIDIA GTC to learn more. https://www.nvidia.com/gtc/

Microsoft cloud-based solutions for financial recommender systems

Moving to the Microsoft Azure cloud solution provides financial institutions with a complete set of computing, networking, and storage resources integrated with workload services capable of handling the requirements of recommender algorithm processing. Microsoft Azure allows developers to build and train new AI models faster with automated machine learning, autoscaling cloud compute, and built-in DevOps.

To help create and implement recommender algorithms, Microsoft provides a GitHub repository with Python best practice examples to facilitate the building and evaluation of recommendation systems using Azure Machine Learning services.

Summary

Financial services organizations are increasingly implementing AI recommender systems to personalize offers of products or services to individual customers. Predictive analysis supported by cloud-based GPU-accelerated AI and ML recommender systems can enhance customer experience and provide a new source of revenue for the organization.

But developing a ML recommender system is time-consuming and complex and requires staff with specialized skills such as data science or programming. Microsoft and NVIDIA provide tools to streamline the process of developing, testing, training, and implementing recommender systems.

Return to Solution Channel Homepage
Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia Shuts Out RISC-V Software Support for GPUs 

September 23, 2022

Nvidia is not interested in bringing software support to its GPUs for the RISC-V architecture despite being an early adopter of the open-source technology in its GPU controllers. Nvidia has no plans to add RISC-V support for CUDA, which is the proprietary GPU software platform, a company representative... Read more…

Microsoft Closes Confidential Computing Loop with AMD’s Milan Chip

September 22, 2022

Microsoft shared details on how it uses an AMD technology to secure artificial intelligence as it builds out a secure AI infrastructure in its Azure cloud service. Microsoft has a strong relationship with Nvidia, but is also working with AMD's Epyc chips (including the new 3D VCache series), MI Instinct accelerators, and also... Read more…

Nvidia Introduces New Ada Lovelace GPU Architecture, OVX Systems, Omniverse Cloud

September 20, 2022

In his GTC keynote today, Nvidia CEO Jensen Huang launched another new Nvidia GPU architecture: Ada Lovelace, named for the legendary mathematician regarded as the first computer programmer. The company also announced tw Read more…

Nvidia’s Hopper GPUs Enter ‘Full Production,’ DGXs Delayed Until Q1

September 20, 2022

Just about six months ago, Nvidia’s spring GTC event saw the announcement of its hotly anticipated Hopper GPU architecture. Now, the GPU giant is announcing that Hopper-generation GPUs (which promise greater energy eff Read more…

NeMo LLM Service: Nvidia’s First Cloud Service Makes AI Less Vague

September 20, 2022

Nvidia is trying to uncomplicate AI with a cloud service that makes AI and its many forms of computing less vague and more conversational. The NeMo LLM service, which Nvidia called its first cloud service, adds a layer of intelligence and interactivity... Read more…

AWS Solution Channel

Shutterstock 1194728515

Simulating 44-Qubit quantum circuits using AWS ParallelCluster

Dr. Fabio Baruffa, Sr. HPC & QC Solutions Architect
Dr. Pavel Lougovski, Pr. QC Research Scientist
Tyson Jones, Doctoral researcher, University of Oxford

Introduction

Currently, an enormous effort is underway to develop quantum computing hardware capable of scaling to hundreds, thousands, and even millions of physical (non-error-corrected) qubits. Read more…

Microsoft/NVIDIA Solution Channel

Shutterstock 1166887495

Improving Insurance Fraud Detection using AI Running on Cloud-based GPU-Accelerated Systems

Insurance is a highly regulated industry that is evolving as the industry faces changing customer expectations, massive amounts of data, and increased regulations. A major issue facing the industry is tracking insurance fraud. Read more…

Nvidia Targets Computers for Robots in the Surgery Rooms

September 20, 2022

Nvidia is laying the groundwork for a future in which humans and robots will be collaborators in the surgery rooms at hospitals. The company announced a computer called IGX for Medical Devices, which will be populated in robots, image scanners and other computers and medical devices involved in patient care close to the point... Read more…

Nvidia Shuts Out RISC-V Software Support for GPUs 

September 23, 2022

Nvidia is not interested in bringing software support to its GPUs for the RISC-V architecture despite being an early adopter of the open-source technology in its GPU controllers. Nvidia has no plans to add RISC-V support for CUDA, which is the proprietary GPU software platform, a company representative... Read more…

Nvidia Introduces New Ada Lovelace GPU Architecture, OVX Systems, Omniverse Cloud

September 20, 2022

In his GTC keynote today, Nvidia CEO Jensen Huang launched another new Nvidia GPU architecture: Ada Lovelace, named for the legendary mathematician regarded as Read more…

Nvidia’s Hopper GPUs Enter ‘Full Production,’ DGXs Delayed Until Q1

September 20, 2022

Just about six months ago, Nvidia’s spring GTC event saw the announcement of its hotly anticipated Hopper GPU architecture. Now, the GPU giant is announcing t Read more…

NeMo LLM Service: Nvidia’s First Cloud Service Makes AI Less Vague

September 20, 2022

Nvidia is trying to uncomplicate AI with a cloud service that makes AI and its many forms of computing less vague and more conversational. The NeMo LLM service, which Nvidia called its first cloud service, adds a layer of intelligence and interactivity... Read more…

Nvidia Targets Computers for Robots in the Surgery Rooms

September 20, 2022

Nvidia is laying the groundwork for a future in which humans and robots will be collaborators in the surgery rooms at hospitals. The company announced a computer called IGX for Medical Devices, which will be populated in robots, image scanners and other computers and medical devices involved in patient care close to the point... Read more…

Survey Results: PsiQuantum, ORNL, and D-Wave Tackle Benchmarking, Networking, and More

September 19, 2022

The are many issues in quantum computing today – among the more pressing are benchmarking, networking and development of hybrid classical-quantum approaches. Read more…

HPC + AI Wall Street to Feature ‘Spooky’ Science for Financial Services

September 18, 2022

Albert Einstein famously described quantum mechanics as "spooky action at a distance" due to the non-intuitive nature of superposition and quantum entangled par Read more…

Analog Chips Find a New Lease of Life in Artificial Intelligence

September 17, 2022

The need for speed is a hot topic among participants at this week’s AI Hardware Summit – larger AI language models, faster chips and more bandwidth for AI machines to make accurate predictions. But some hardware startups are taking a throwback approach for AI computing to counter the more-is-better... Read more…

Nvidia Shuts Out RISC-V Software Support for GPUs 

September 23, 2022

Nvidia is not interested in bringing software support to its GPUs for the RISC-V architecture despite being an early adopter of the open-source technology in its GPU controllers. Nvidia has no plans to add RISC-V support for CUDA, which is the proprietary GPU software platform, a company representative... Read more…

AWS Takes the Short and Long View of Quantum Computing

August 30, 2022

It is perhaps not surprising that the big cloud providers – a poor term really – have jumped into quantum computing. Amazon, Microsoft Azure, Google, and th Read more…

The Final Frontier: US Has Its First Exascale Supercomputer

May 30, 2022

In April 2018, the U.S. Department of Energy announced plans to procure a trio of exascale supercomputers at a total cost of up to $1.8 billion dollars. Over the ensuing four years, many announcements were made, many deadlines were missed, and a pandemic threw the world into disarray. Now, at long last, HPE and Oak Ridge National Laboratory (ORNL) have announced that the first of those... Read more…

US Senate Passes CHIPS Act Temperature Check, but Challenges Linger

July 19, 2022

The U.S. Senate on Tuesday passed a major hurdle that will open up close to $52 billion in grants for the semiconductor industry to boost manufacturing, supply chain and research and development. U.S. senators voted 64-34 in favor of advancing the CHIPS Act, which sets the stage for the final consideration... Read more…

Top500: Exascale Is Officially Here with Debut of Frontier

May 30, 2022

The 59th installment of the Top500 list, issued today from ISC 2022 in Hamburg, Germany, officially marks a new era in supercomputing with the debut of the first-ever exascale system on the list. Frontier, deployed at the Department of Energy’s Oak Ridge National Laboratory, achieved 1.102 exaflops in its fastest High Performance Linpack run, which was completed... Read more…

Chinese Startup Biren Details BR100 GPU

August 22, 2022

Amid the high-performance GPU turf tussle between AMD and Nvidia (and soon, Intel), a new, China-based player is emerging: Biren Technology, founded in 2019 and headquartered in Shanghai. At Hot Chips 34, Biren co-founder and president Lingjie Xu and Biren CTO Mike Hong took the (virtual) stage to detail the company’s inaugural product: the Biren BR100 general-purpose GPU (GPGPU). “It is my honor to present... Read more…

Newly-Observed Higgs Mode Holds Promise in Quantum Computing

June 8, 2022

The first-ever appearance of a previously undetectable quantum excitation known as the axial Higgs mode – exciting in its own right – also holds promise for developing and manipulating higher temperature quantum materials... Read more…

AMD’s MI300 APUs to Power Exascale El Capitan Supercomputer

June 21, 2022

Additional details of the architecture of the exascale El Capitan supercomputer were disclosed today by Lawrence Livermore National Laboratory’s (LLNL) Terri Read more…

Leading Solution Providers

Contributors

Tesla Bulks Up Its GPU-Powered AI Super – Is Dojo Next?

August 16, 2022

Tesla has revealed that its biggest in-house AI supercomputer – which we wrote about last year – now has a total of 7,360 A100 GPUs, a nearly 28 percent uplift from its previous total of 5,760 GPUs. That’s enough GPU oomph for a top seven spot on the Top500, although the tech company best known for its electric vehicles has not publicly benchmarked the system. If it had, it would... Read more…

Exclusive Inside Look at First US Exascale Supercomputer

July 1, 2022

HPCwire takes you inside the Frontier datacenter at DOE's Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tenn., for an interview with Frontier Project Direc Read more…

AMD Opens Up Chip Design to the Outside for Custom Future

June 15, 2022

AMD is getting personal with chips as it sets sail to make products more to the liking of its customers. The chipmaker detailed a modular chip future in which customers can mix and match non-AMD processors in a custom chip package. "We are focused on making it easier to implement chips with more flexibility," said Mark Papermaster, chief technology officer at AMD during the analyst day meeting late last week. Read more…

Intel Reiterates Plans to Merge CPU, GPU High-performance Chip Roadmaps

May 31, 2022

Intel reiterated it is well on its way to merging its roadmap of high-performance CPUs and GPUs as it shifts over to newer manufacturing processes and packaging technologies in the coming years. The company is merging the CPU and GPU lineups into a chip (codenamed Falcon Shores) which Intel has dubbed an XPU. Falcon Shores... Read more…

Nvidia, Intel to Power Atos-Built MareNostrum 5 Supercomputer

June 16, 2022

The long-troubled, hotly anticipated MareNostrum 5 supercomputer finally has a vendor: Atos, which will be supplying a system that includes both Nvidia and Inte Read more…

UCIe Consortium Incorporates, Nvidia and Alibaba Round Out Board

August 2, 2022

The Universal Chiplet Interconnect Express (UCIe) consortium is moving ahead with its effort to standardize a universal interconnect at the package level. The c Read more…

Using Exascale Supercomputers to Make Clean Fusion Energy Possible

September 2, 2022

Fusion, the nuclear reaction that powers the Sun and the stars, has incredible potential as a source of safe, carbon-free and essentially limitless energy. But Read more…

Is Time Running Out for Compromise on America COMPETES/USICA Act?

June 22, 2022

You may recall that efforts proposed in 2020 to remake the National Science Foundation (Endless Frontier Act) have since expanded and morphed into two gigantic bills, the America COMPETES Act in the U.S. House of Representatives and the U.S. Innovation and Competition Act in the U.S. Senate. So far, efforts to reconcile the two pieces of legislation have snagged and recent reports... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire