April 23, 2013
Last week, Adapteva revealed the first production units of its $99 Linux "supercomputer." Speaking at the Linux Collaboration Summit in San Francisco, California, CEO Andreas Olofsson announced the first batch of Parallella final form factor boards will be shipped to the chipmaker's 6,300 Kickstarter supporters by this summer. Read more…
October 29, 2012
Kickstarter investment model notches another high-tech success. Read more…
September 28, 2012
Chipmaker Adapteva is attempting to bypass the conventional venture capital funding route and collect money via a micro-investor platform known as Kickstarter. In the process, the company will open up its software and hardware design for its manycore Epiphany architecture, and deliver a parallel computing kit to anyone who can ante up $99. Read more…
August 22, 2012
Chipmaker Adapteva is sampling its 4th-generation multicore processor, known as Epiphany-IV. The 64-core chip delivers a peak performance of 100 gigaflops and draws just two watts of power, yielding a stunning 50 gigaflops/watt. The engineering samples were manufactured by GLOBALFOUNDRIES on its latest 28nm process technology. Read more…
October 3, 2011
In May, chip startup Adapteva debuted Epiphany, a manycore architecture designed to maximize floating point horsepower with the lowest possible energy footprint. The initial silicon was a 16-core processor, implemented on the 65nm process node. This week, the company announced it has taped out a 64-core version of the design on the 28nm process node, delivering 100 gigaflops of performance at under 2 watts of power. Read more…
May 3, 2011
Semiconductor startup Adapteva has demonstrated a manycore floating point processor architecture that promises ten times the performance per watt as the best chip technology on the market today. The architecture, called Epiphany, is aimed initially at embedded applications, but has general applicability across all math-intensive workloads in mobile computing, telecommunications and high performance computing. Read more…
A workload-driven system capable of running HPC/AI workloads is more important than ever. Organizations face many challenges when building a system capable of running HPC and AI workloads. There are also many complexities in system design and integration. Building a workload driven solution requires expertise and domain knowledge that organizational staff may not possess.
This paper describes how Quanta Cloud Technology (QCT), a long-time Intel® partner, developed the Taiwania 2 and Taiwania 3 supercomputers to meet the research needs of the Taiwan’s academic, industrial, and enterprise users. The Taiwan National Center for High-Performance Computing (NCHC) selected QCT for their expertise in building HPC/AI supercomputers and providing worldwide end-to-end support for solutions from system design, through integration, benchmarking and installation for end users and system integrators to ensure customer success.
© 2022 HPCwire. All Rights Reserved. A Tabor Communications Publication
HPCwire is a registered trademark of Tabor Communications, Inc. Use of this site is governed by our Terms of Use and Privacy Policy.
Reproduction in whole or in part in any form or medium without express written permission of Tabor Communications, Inc. is prohibited.