Tesla Bulks Up Its GPU-Powered AI Super – Is Dojo Next?

August 16, 2022

Tesla has revealed that its biggest in-house AI supercomputer – which we wrote about last year – now has a total of 7,360 A100 GPUs, a nearly 28 percent uplift from its previous total of 5,760 GPUs. That’s enough GPU oomph for a top seven spot on the Top500, although the tech company best known for its electric vehicles has not publicly benchmarked the system. If it had, it would... Read more…

Nvidia Announces ‘Eos’ Supercomputer

March 22, 2022

At GTC22 today, Nvidia unveiled its new H100 GPU, the first of its new ‘Hopper’ architecture, along with a slew of accompanying configurations, systems and Read more…

Facebook Parent Meta’s New AI Supercomputer Will Be ‘World’s Fastest’

January 24, 2022

Fresh off its rebrand last October, Meta (née Facebook) is putting muscle behind its vision of a metaversal future with a massive new AI supercomputer called the AI Research SuperCluster (RSC). Meta says that RSC will be used to help build new AI models, develop augmented reality tools, seamlessly analyze multimedia data and more. The supercomputer’s... Read more…

Neocortex Will Be First-of-Its-Kind 800,000-Core AI Supercomputer

June 9, 2020

Pittsburgh Supercomputing Center (PSC - a joint research organization of Carnegie Mellon University and the University of Pittsburgh) has won a $5 million award Read more…

  • arrow
  • Click Here for More Headlines
  • arrow

Whitepaper

2021 Storage Technology Series

Data growth is relentless and inevitable, as data has come to define many aspects of research computing. Simulation data, ever more sophisticated sensor data, and now the rise of machine learning all contribute to the accelerating pace of data growth.

Learn how archive is different than backup, how much data should be archived, and how to architect a comprehensive HSM solution using new data management technologies that can handle this accelerating growth today and well into the future.

Download

Sponsored by Seagate

Whitepaper

End-to-End Support Toward Accelerating Discovery and Innovation with a Converged HPC and AI Supercomputer

A workload-driven system capable of running HPC/AI workloads is more important than ever. Organizations face many challenges when building a system capable of running HPC and AI workloads. There are also many complexities in system design and integration. Building a workload driven solution requires expertise and domain knowledge that organizational staff may not possess.

This paper describes how Quanta Cloud Technology (QCT), a long-time Intel® partner, developed the Taiwania 2 and Taiwania 3 supercomputers to meet the research needs of the Taiwan’s academic, industrial, and enterprise users. The Taiwan National Center for High-Performance Computing (NCHC) selected QCT for their expertise in building HPC/AI supercomputers and providing worldwide end-to-end support for solutions from system design, through integration, benchmarking and installation for end users and system integrators to ensure customer success.

Download Now

Sponsored by QCT

Advanced Scale Career Development & Workforce Enhancement Center

Featured Advanced Scale Jobs:

Receive the Monthly
Advanced Computing Job Bank Resource:

HPCwire Resource Library

HPCwire Product Showcase

Subscribe to the Monthly
Technology Product Showcase:

HPCwire