August 16, 2022
Tesla has revealed that its biggest in-house AI supercomputer – which we wrote about last year – now has a total of 7,360 A100 GPUs, a nearly 28 percent uplift from its previous total of 5,760 GPUs. That’s enough GPU oomph for a top seven spot on the Top500, although the tech company best known for its electric vehicles has not publicly benchmarked the system. If it had, it would... Read more…
June 22, 2022
Cerebras Systems makes the largest chip in the world, but is already thinking about its upcoming AI chips as learning models continue to grow at breakneck speed. The company’s latest Wafer Scale Engine chip is indeed the size of a wafer, and is made using TSMC’s 7nm process. The next chip will pack in more cores to handle the fast-growing compute needs of AI, said Andrew Feldman, CEO of Cerebras Systems. Read more…
February 24, 2022
In science fiction and future studies, the word “singularity” is invoked in reference to a rapidly snowballing artificial intelligence that, repeatedly iterating on itself, eclipses all human knowledge and ability. It is this word that Microsoft—perhaps ambitiously—has invoked for its new AI project, a “globally distributed scheduling service for highly efficient and reliable execution of deep learning training and inference workloads.” Read more…
December 21, 2021
Decoding the replication mechanisms of the SARS-CoV-2 virus has been a key research quest as the COVID-19 pandemic continues. For the scientific computin Read more…
December 1, 2021
MLCommons today released its fifth round of MLPerf training benchmark results with Nvidia GPUs again dominating. That said, a few other AI accelerator companies Read more…
October 15, 2021
With more and more enterprises turning to AI for a myriad of tasks, companies quickly find out that training AI models is expensive, difficult and time-consuming. Finding a new approach to deal with those cascading challenges is the aim of a new startup, MosaicML, that just came out of stealth... Read more…
April 21, 2021
MLPerf.org, the young ML benchmarking organization, today issued its third round of inferencing results (MLPerf Inference v1.0) intended to compare how well var Read more…
February 23, 2021
IBM has released details of a prototype AI chip geared toward low-precision training and inference across different AI model types while retaining model quality within AI applications. In a paper delivered during this year’s International Solid-State Circuits Virtual Conference, IBM... Read more…
Five Recommendations to Optimize Data Pipelines
When building AI systems at scale, managing the flow of data can make or break a business. The various stages of the AI data pipeline pose unique challenges that can disrupt or misdirect the flow of data, ultimately impacting the effectiveness of AI storage and systems.
With so many applications and diverse requirements for data types, management systems, workloads, and compliance regulations, these challenges are only amplified. Without a clear, continuous flow of data throughout the AI data lifecycle, AI models can perform poorly or even dangerously.
To ensure your AI systems are optimized, follow these five essential steps to eliminate bottlenecks and maximize efficiency.
Karlsruhe Institute of Technology (KIT) is an elite public research university located in Karlsruhe, Germany and is engaged in a broad range of disciplines in natural sciences, engineering, economics, humanities, and social sciences. For institutions like KIT, HPC has become indispensable to cutting-edge research in these areas.
KIT’s HoreKa supercomputer supports hundreds of research initiatives including a project aimed at predicting when the Earth’s ozone layer will be fully healed. With HoreKa, projects like these can process larger amounts of data enabling researchers to deepen their understanding of highly complex natural processes.
Read this case study to learn how KIT implemented their supercomputer powered by Lenovo ThinkSystem servers, featuring Lenovo Neptune™ liquid cooling technology, to attain higher performance while reducing power consumption.
© 2023 HPCwire. All Rights Reserved. A Tabor Communications Publication
HPCwire is a registered trademark of Tabor Communications, Inc. Use of this site is governed by our Terms of Use and Privacy Policy.
Reproduction in whole or in part in any form or medium without express written permission of Tabor Communications, Inc. is prohibited.