US Pursues Next-gen Exascale Systems with 5-10x the Performance of Frontier

June 28, 2022

With the Linpack exaflops milestone achieved by the Frontier supercomputer at Oak Ridge National Laboratory, the United States is turning its attention to the next crop of exascale machines, some 5-10x more performant than Frontier. At least one such system is being planned for the 2025-2030 timeline, and the DOE is soliciting input from the vendor community... Read more…

ANL Special Colloquium on The Future of Computing

May 19, 2022

There are, of course, a myriad of ideas regarding computing’s future. At yesterday’s Argonne National Laboratory’s Director’s Special Colloquium, The Future of Computing, guest speaker Sadasivan Shankar, did his best to convince the audience that the high-energy cost of the current computing paradigm – not (just) economic cost; we’re talking entropy here – is fundamentally undermining computing’s progress such that... Read more…

Argonne Supercomputer Advances Energy Storage Research

May 13, 2022

The lack of large-scale energy storage bottlenecks many sources of renewable energy, such as sunlight-reliant solar power and unpredictable wind power. Researchers from Lawrence Livermore National Laboratory (LLNL) are working on changing that, leveraging an allocation on Argonne National Laboratory’s Theta supercomputer to better understand the dynamics of ion transport that are at the core... Read more…

Exascale Watch: Aurora Installation Underway, Now Open for Reservations

May 10, 2022

Installation has begun on the Aurora supercomputer, Rick Stevens (associate director of Argonne National Laboratory) revealed today during the Intel Vision event keynote taking place in Dallas, Texas, and online. Joining Intel exec Raja Koduri on stage, Stevens confirmed that the Aurora build is underway – a major development for a system that is projected to deliver more... Read more…

Aurora’s Troubles Move Frontier into Pole Exascale Position

October 1, 2020

Intel’s 7nm node delay has raised questions about the status of the Aurora supercomputer that was scheduled to be stood up at Argonne National Laboratory next year. Aurora was in the running to be the United States’ first exascale supercomputer although it was on a contemporaneous timeline with... Read more…

First Annual Exascale Day Celebrates Next 1000x Horizon

October 21, 2019

October 18 (aka 10/18) marked the first annual exascale day, hosted by Cray, the Exascale Computing Project and the DOE labs -- Argonne, Oak Ridge and Lawrence Read more…

Cerebras to Supply DOE with Wafer-Scale AI Supercomputing Technology

September 17, 2019

Cerebras Systems, which debuted its wafer-scale AI silicon at Hot Chips last month, has entered into a multi-year partnership with Argonne National Laboratory and Lawrence Livermore National Laboratory as part of a larger collaboration with the U.S. Department of Energy... Read more…

Argonne Team Tackles Uncertainties in Engine Simulation

August 27, 2015

As we head deeper into the digital age, computers appropriate an ever greater share of the work of designing and testing physical systems, spanning the gamu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow

Whitepaper

Penguin Computing Scyld Cloud Central™: A New Cloud-First Approach to HPC and AI Workloads

Making the Most of Today’s Cloud-First Approach to Running HPC and AI Workloads With Penguin Scyld Cloud Central™

Bursting to cloud has long been used to complement on-premises HPC capacity to meet variable compute demands. But in today’s age of cloud, many workloads start on the cloud with little IT or corporate oversight. What is needed is a way to operationalize the use of these cloud resources so that users get the compute power they need when they need it, but with constraints that take costs and the efficient use of existing compute power into account. Download this special report to learn more about this topic.

Download Now

Sponsored by Penguin Solutions

Whitepaper

QCT POD- An Adaptive Converged Platform for HPC and AI

Data center infrastructure running AI and HPC workloads requires powerful microprocessor chips and the use of CPUs, GPUs, and acceleration chips to carry out compute intensive tasks. AI and HPC processing generate excessive heat which results in higher data center power consumption and additional data center costs.

Data centers traditionally use air cooling solutions including heatsinks and fans that may not be able to reduce energy consumption while maintaining infrastructure performance for AI and HPC workloads. Liquid cooled systems will be increasingly replacing air cooled solutions for data centers running HPC and AI workloads to meet heat and performance needs.

QCT worked with Intel to develop the QCT QoolRack, a rack-level direct-to-chip cooling solution which meets data center needs with impressive cooling power savings per rack over air cooled solutions, and reduces data centers’ carbon footprint with QCT QoolRack smart management.

Download Now

Sponsored by QCT

Advanced Scale Career Development & Workforce Enhancement Center

Featured Advanced Scale Jobs:

SUBSCRIBE for monthly job listings and articles on HPC careers.

HPCwire Resource Library

HPCwire Product Showcase

Subscribe to the Monthly
Technology Product Showcase:

HPCwire