HPC + AI Wall Street to Feature ‘Spooky’ Science for Financial Services

September 18, 2022

Albert Einstein famously described quantum mechanics as "spooky action at a distance" due to the non-intuitive nature of superposition and quantum entangled par Read more…

Nvidia Platform Pushes GPUs into Machine Learning, High Performance Data Analytics

October 10, 2018

GPU leader Nvidia, generally associated with deep learning, autonomous vehicles and other higher-end enterprise and scientific workloads (and gaming, of course) Read more…

UK Met Office Deploys Cray AI/Analytics to Enhance Forecasting

September 26, 2018

Already home to three Cray XC40 systems (the last one deployed in 2016), the Met Office, a leading weather center in the U.K., has now added Cray’s Urika-XC s Read more…

Need Data Science CyberInfrastructure? Check with RENCI’s xDCI Concierge

September 6, 2017

For about a year the Renaissance Computing Institute (RENCI) has been assembling best practices and open source components around data-driven scientific researc Read more…

HPE Gobbles SGI for Larger Slice of $11B HPC Pie

August 11, 2016

Hewlett Packard Enterprise (HPE) announced today that it will acquire rival HPC server maker SGI for $7.75 per share, or about $275 million, inclusive of cash and debt. The deal ends the seven-year reprieve that kept the SGI banner flying after Rackable Systems purchased the bankrupt Silicon Graphics Inc. for $25 million in 2009 and assumed the SGI brand. Bringing SGI into its fold bolsters HPE's high-performance computing and data analytics capabilities and expands its position... Read more…

Intel Xeon E7 Balloons In-memory Capacity, Targets Real-Time Analytics

June 8, 2016

Who crunches more data faster, wins. It’s this drive that cuts through and clarifies the essence of the evolutionary spirit in the computer industry, the dual Read more…

Nielsen and Intel Migrate HPC Efficiency and Data Analytics to Big Data

May 16, 2016

Nielsen has collaborated with Intel to migrate important pieces of HPC technology into Nielsen’s big-data analytic workflows including MPI, mature numerical libraries from NAG (the Numerical Algorithms Group), as well as custom C++ analytic codes. This complementary hybrid approach integrates the benefits of Hadoop data management and workflow scheduling with an extensive pool of HPC tools and C/C++ capabilities for analytic applications. In particular, the use of MPI reduces latency, permits reuse of the Hadoop servers, and co-locates the MPI applications close to the data. Read more…

Making Sense of HPC in the Age of Democratization

March 8, 2016

These are exciting times for HPC. High-performance computing and its cousin high-productivity computing are expanding such that the previous definitions of HPC Read more…

  • arrow
  • Click Here for More Headlines
  • arrow

Whitepaper

Powering Up Automotive Simulation: Why Migrating to the Cloud is a Game Changer

The increasing complexity of electric vehicles result in large and complex computational models for simulations that demand enormous compute resources. On-premises high-performance computing (HPC) clusters and computer-aided engineering (CAE) tools are commonly used but some limitations occur when the models are too big or when multiple iterations need to be done in a very short term, leading to a lack of available compute resources. In this hybrid approach, cloud computing offers a flexible and cost-effective alternative, allowing engineers to utilize the latest hardware and software on-demand. Ansys Gateway powered by AWS, a cloud-based simulation software platform, drives efficiencies in automotive engineering simulations. Complete Ansys simulation and CAE/CAD developments can be managed in the cloud with access to AWS’s latest hardware instances, providing significant runtime acceleration.

Two recent studies show how Ansys Gateway powered by AWS can balance run times and costs, making it a compelling solution for automotive development.

Download Now

Sponsored by ANSYS

Whitepaper

How to Save 80% with TotalCAE Managed On-prem Clusters and Cloud

Five Recommendations to Optimize Data Pipelines

When building AI systems at scale, managing the flow of data can make or break a business. The various stages of the AI data pipeline pose unique challenges that can disrupt or misdirect the flow of data, ultimately impacting the effectiveness of AI storage and systems.

With so many applications and diverse requirements for data types, management systems, workloads, and compliance regulations, these challenges are only amplified. Without a clear, continuous flow of data throughout the AI data lifecycle, AI models can perform poorly or even dangerously.

To ensure your AI systems are optimized, follow these five essential steps to eliminate bottlenecks and maximize efficiency.

Download Now

Sponsored by TotalCAE

Advanced Scale Career Development & Workforce Enhancement Center

Featured Advanced Scale Jobs:

SUBSCRIBE for monthly job listings and articles on HPC careers.

HPCwire Resource Library

HPCwire Product Showcase

Subscribe to the Monthly
Technology Product Showcase:

HPCwire