Nvidia Bakes Liquid Cooling into PCIe GPU Cards

May 24, 2022

Nvidia is bringing liquid cooling, which it typically puts alongside GPUs on the high-performance computing systems, to its mainstream server GPU portfolio. The company will start shipping its A100 PCIe Liquid Cooled GPU, which is based on the Ampere architecture, for servers later this year. The liquid-cooled GPU based on the company's new Hopper architecture for PCIe slots will ship early next year. Read more…

Asetek Announces It Is Exiting HPC to Protect Future Profitability

September 22, 2021

Liquid cooling specialist Asetek, well-known in HPC circles for its direct-to-chip cooling technology that is inside some of the fastest supercomputers in the world, announced today that it is exiting the HPC space amid multiple supply chain issues related to the pandemic. Although pandemic supply chain... Read more…

Max Planck Society Begins Installation of Liquid-Cooled Supercomputer from Lenovo

July 9, 2020

Lenovo announced today that it is supplying a new high performance computer to the Max Planck Society, one of Germany's premier research organizations. Comprise Read more…

Cooling for Maximal High-bandwidth Processor Performance and a Bellwether Cluster Deployment

April 17, 2020

Heat and the impact of high processor memory bandwidth are key factors that must be considered when procuring a cluster that can realize the full potential of t Read more…

Goonhilly Unveils New Immersion-Cooled Platform, Doubles Down on Sustainability Mission

July 16, 2019

Goonhilly Earth Station has opened its new datacenter – an enhancement to its existing tier 3 facility – in Cornwall, England, touting an ambitious commitme Read more…

Oil and Gas Supercloud Clears Out Remaining Knights Landing Inventory: All 38,000 Wafers

March 13, 2019

The McCloud HPC service being built by Australia’s DownUnder GeoSolutions (DUG) outside Houston is set to become the largest oil and gas cloud in the world th Read more…

Aquarius Cold Plate Cooling System Tested by NREL, Sandia

March 7, 2019

In 2018, NREL and Sandia announced their intention to study the energy and cost savings of Aquila’s Aquarius cooling system in a real-world environment by installing a test system (“Yacumama”) at NREL. Now, nearly a year later, the partners have revealed the results of the test. Read more…

Pumping New Life into HPC Clusters, the Case for Liquid Cooling

July 10, 2018

High Performance Computing (HPC) faces some daunting challenges in the coming years as traditional, industry-standard systems push the boundaries of data center Read more…

  • arrow
  • Click Here for More Headlines
  • arrow

Whitepaper

Powering Up Automotive Simulation: Why Migrating to the Cloud is a Game Changer

The increasing complexity of electric vehicles result in large and complex computational models for simulations that demand enormous compute resources. On-premises high-performance computing (HPC) clusters and computer-aided engineering (CAE) tools are commonly used but some limitations occur when the models are too big or when multiple iterations need to be done in a very short term, leading to a lack of available compute resources. In this hybrid approach, cloud computing offers a flexible and cost-effective alternative, allowing engineers to utilize the latest hardware and software on-demand. Ansys Gateway powered by AWS, a cloud-based simulation software platform, drives efficiencies in automotive engineering simulations. Complete Ansys simulation and CAE/CAD developments can be managed in the cloud with access to AWS’s latest hardware instances, providing significant runtime acceleration.

Two recent studies show how Ansys Gateway powered by AWS can balance run times and costs, making it a compelling solution for automotive development.

Download Now

Sponsored by ANSYS

Whitepaper

How to Save 80% with TotalCAE Managed On-prem Clusters and Cloud

Five Recommendations to Optimize Data Pipelines

When building AI systems at scale, managing the flow of data can make or break a business. The various stages of the AI data pipeline pose unique challenges that can disrupt or misdirect the flow of data, ultimately impacting the effectiveness of AI storage and systems.

With so many applications and diverse requirements for data types, management systems, workloads, and compliance regulations, these challenges are only amplified. Without a clear, continuous flow of data throughout the AI data lifecycle, AI models can perform poorly or even dangerously.

To ensure your AI systems are optimized, follow these five essential steps to eliminate bottlenecks and maximize efficiency.

Download Now

Sponsored by TotalCAE

Advanced Scale Career Development & Workforce Enhancement Center

Featured Advanced Scale Jobs:

SUBSCRIBE for monthly job listings and articles on HPC careers.

HPCwire Resource Library

HPCwire Product Showcase

Subscribe to the Monthly
Technology Product Showcase:

HPCwire