Leibniz QIC’s Mission to Coax Qubits and Bits to Work Together

March 14, 2023

Four years after passing the U.S. National Quantum Initiative Act and decades after early quantum development and commercialization efforts started – think D- Read more…

Supercomputing Leaders Discuss Resilience in the Face of Growing Crises

December 29, 2022

Many panels at SC22 focused on how supercomputing centers can help others recover from disasters – but one panel, “Facing the Unexpected: Disaster Managemen Read more…

LRZ Adds Mega AI System as It Stacks up on Future Computing Systems

May 25, 2022

The battle among high-performance computing hubs to stack up on cutting-edge computers for quicker time to science is getting steamy as new chip technologies become mainstream. A European supercomputing hub near Munich, called the Leibniz Supercomputing Centre, is deploying Cerebras Systems' CS-2 AI system as part of an internal initiative called Future Computing to assess alternative computing... Read more…

Summer Reading: “High-Performance Computing Is at an Inflection Point”

July 21, 2021

At last month’s 11th International Symposium on Highly Efficient Accelerators and Reconfigurable Technologies (HEART), a group of researchers led by Martin Schulz of the Leibniz Supercomputing Center (Munich) presented a “position paper” in which they argue HPC architectural landscape... Read more…

ISC21 Keynote: HPC-Powered Radar Tomography for Sustainable, Equitable Cities

June 29, 2021

ISC High Performance 2021 kicked off yesterday with a keynote from Dr. Xiaoxiang Zhu, a professor of data science and Earth observation at the Technical University of Munich. The conference, held virtually for the second time due to the ongoing coronavirus pandemic, featured a surprisingly COVID-light agenda... Read more…

LRZ Announces New Phase of SuperMUC-NG Supercomputer with Intel’s ‘Ponte Vecchio’ GPU

May 5, 2021

At the Leibniz Supercomputing Centre (LRZ) in München, Germany – one of the constituent centers of the Gauss Centre for Supercomputing (GCS) – the SuperMUC Read more…

2020 HPCwire Awards Celebrate Supercomputing Achievements in the Sciences

December 23, 2020

It was not a typical year for supercomputing in the sciences. When the pandemic struck, virtually every research supercomputer in the world pivoted much of its Read more…

GCS Awards 2.3 Billion Core Hours – a New Record

May 15, 2020

The Gauss Centre for Supercomputing (GCS) has completed its 23rd Call for Large-Scale Projects, allocating a total of 2.3 billion core hours across 20 national Read more…

  • arrow
  • Click Here for More Headlines
  • arrow

Whitepaper

Streamlining AI Data Management

Five Recommendations to Optimize Data Pipelines

When building AI systems at scale, managing the flow of data can make or break a business. The various stages of the AI data pipeline pose unique challenges that can disrupt or misdirect the flow of data, ultimately impacting the effectiveness of AI storage and systems.

With so many applications and diverse requirements for data types, management systems, workloads, and compliance regulations, these challenges are only amplified. Without a clear, continuous flow of data throughout the AI data lifecycle, AI models can perform poorly or even dangerously.

To ensure your AI systems are optimized, follow these five essential steps to eliminate bottlenecks and maximize efficiency.

Download Now

Sponsored by DDN

Whitepaper

Taking research further with extraordinary compute power and efficiency

Karlsruhe Institute of Technology (KIT) is an elite public research university located in Karlsruhe, Germany and is engaged in a broad range of disciplines in natural sciences, engineering, economics, humanities, and social sciences. For institutions like KIT, HPC has become indispensable to cutting-edge research in these areas.

KIT’s HoreKa supercomputer supports hundreds of research initiatives including a project aimed at predicting when the Earth’s ozone layer will be fully healed. With HoreKa, projects like these can process larger amounts of data enabling researchers to deepen their understanding of highly complex natural processes.

Read this case study to learn how KIT implemented their supercomputer powered by Lenovo ThinkSystem servers, featuring Lenovo Neptune™ liquid cooling technology, to attain higher performance while reducing power consumption.

Download Now

Sponsored by Lenovo

Advanced Scale Career Development & Workforce Enhancement Center

Featured Advanced Scale Jobs:

Receive the Monthly
Advanced Computing Job Bank Resource:

HPCwire Resource Library

HPCwire Product Showcase

Subscribe to the Monthly
Technology Product Showcase:

HPCwire