March 14, 2023
Four years after passing the U.S. National Quantum Initiative Act and decades after early quantum development and commercialization efforts started – think D- Read more…
December 29, 2022
Many panels at SC22 focused on how supercomputing centers can help others recover from disasters – but one panel, “Facing the Unexpected: Disaster Managemen Read more…
May 25, 2022
The battle among high-performance computing hubs to stack up on cutting-edge computers for quicker time to science is getting steamy as new chip technologies become mainstream. A European supercomputing hub near Munich, called the Leibniz Supercomputing Centre, is deploying Cerebras Systems' CS-2 AI system as part of an internal initiative called Future Computing to assess alternative computing... Read more…
July 21, 2021
At last month’s 11th International Symposium on Highly Efficient Accelerators and Reconfigurable Technologies (HEART), a group of researchers led by Martin Schulz of the Leibniz Supercomputing Center (Munich) presented a “position paper” in which they argue HPC architectural landscape... Read more…
June 29, 2021
ISC High Performance 2021 kicked off yesterday with a keynote from Dr. Xiaoxiang Zhu, a professor of data science and Earth observation at the Technical University of Munich. The conference, held virtually for the second time due to the ongoing coronavirus pandemic, featured a surprisingly COVID-light agenda... Read more…
May 5, 2021
At the Leibniz Supercomputing Centre (LRZ) in München, Germany – one of the constituent centers of the Gauss Centre for Supercomputing (GCS) – the SuperMUC Read more…
December 23, 2020
It was not a typical year for supercomputing in the sciences. When the pandemic struck, virtually every research supercomputer in the world pivoted much of its Read more…
May 15, 2020
The Gauss Centre for Supercomputing (GCS) has completed its 23rd Call for Large-Scale Projects, allocating a total of 2.3 billion core hours across 20 national Read more…
Making the Most of Today’s Cloud-First Approach to Running HPC and AI Workloads With Penguin Scyld Cloud Central™
Bursting to cloud has long been used to complement on-premises HPC capacity to meet variable compute demands. But in today’s age of cloud, many workloads start on the cloud with little IT or corporate oversight. What is needed is a way to operationalize the use of these cloud resources so that users get the compute power they need when they need it, but with constraints that take costs and the efficient use of existing compute power into account. Download this special report to learn more about this topic.
Data center infrastructure running AI and HPC workloads requires powerful microprocessor chips and the use of CPUs, GPUs, and acceleration chips to carry out compute intensive tasks. AI and HPC processing generate excessive heat which results in higher data center power consumption and additional data center costs.
Data centers traditionally use air cooling solutions including heatsinks and fans that may not be able to reduce energy consumption while maintaining infrastructure performance for AI and HPC workloads. Liquid cooled systems will be increasingly replacing air cooled solutions for data centers running HPC and AI workloads to meet heat and performance needs.
QCT worked with Intel to develop the QCT QoolRack, a rack-level direct-to-chip cooling solution which meets data center needs with impressive cooling power savings per rack over air cooled solutions, and reduces data centers’ carbon footprint with QCT QoolRack smart management.
© 2023 HPCwire. All Rights Reserved. A Tabor Communications Publication
HPCwire is a registered trademark of Tabor Communications, Inc. Use of this site is governed by our Terms of Use and Privacy Policy.
Reproduction in whole or in part in any form or medium without express written permission of Tabor Communications, Inc. is prohibited.