Will Approximation Drive Post-Moore’s Law HPC Gains?

July 26, 2021

“Hardware-based improvements are going to get more and more difficult,” said Neil Thompson, an innovation scholar at MIT’s Computer Science and Artificial Intelligence Lab (CSAIL). “I think that’s something that this crowd will probably, actually, be already familiar with.” Thompson, speaking... Read more…

PNNL Researchers Unveil Tool to Accelerate CGRA Development

June 18, 2021

Moore’s law is in decline due to the physical limits of transistor chips, putting an expiration date on a hitherto-perennial exponential trend in computing po Read more…

A Carbon Crisis Looms Over Supercomputing. How Do We Stop It?

June 11, 2021

Supercomputing is extraordinarily power-hungry, with many of the top systems measuring their peak demand in the megawatts due to powerful processors and their c Read more…

A Declaration of Interdependence through Non von Neumann Architecture

July 22, 2020

The unprecedented success of the von Neumann architecture (vNa) and its many derivatives over the last seven decades has yielded a performance-gain in excess of Read more…

Reviving Moore’s Law? LBNL Researchers See Promise in Heterostructure Oxides

July 9, 2020

The reality of Moore’s law’s decline is no longer doubted for good empirical reasons. That said, never say never. Recent work by Lawrence Berkeley National Read more…

Chip Proposals Seek to Revive US Manufacturing

June 26, 2020

Legislation introduced in the U.S. House and Senate seeks to revive the U.S. semiconductor industry via a roughly $12 billion spending package and tax incentive Read more…

Principles and Practice of Scalable Systems (PPoSS): NSF Looks to Scale HPC, Distributed Apps

March 2, 2020

A new National Science Foundation initiative aims to develop a framework for advancing the next generation of scalable systems and applications, including HPC platforms. The nearly $90 million program, Principles and Practice of Scalable Systems (PPoSS), will over the next decade focus on scaling systems and applications. Among the challenges is keeping pace with emerging AI and... Read more…

MIT Researchers Build Carbon Nanotube Microprocessor

September 5, 2019

A years-long mission to build a microprocessor out of carbon nanotube transistors has finally succeeded thanks to a team of MIT researchers. The development comes as the sustainability of Moore’s Law is increasingly called into question. Silicon-based transistors are nearing the point when they will be unable to shrink anymore, delivering increasingly marginal improvements. Read more…

  • arrow
  • Click Here for More Headlines
  • arrow

Whitepaper

A New Standard in CAE Solutions for Manufacturing

Today, manufacturers of all sizes face many challenges. Not only do they need to deliver complex products quickly, they must do so with limited resources while continuously innovating and improving product quality. With the use of computer-aided engineering (CAE), engineers can design and test ideas for new products without having to physically build many expensive prototypes. This helps lower costs, enhance productivity, improve quality, and reduce time to market.

As the scale and scope of CAE grows, manufacturers need reliable partners with deep HPC and manufacturing expertise. Together with AMD, HPE provides a comprehensive portfolio of high performance systems and software, high value services, and an outstanding ecosystem of performance optimized CAE applications to help manufacturing customers reduce costs and improve quality, productivity, and time to market.

Read this whitepaper to learn how HPE and AMD set a new standard in CAE solutions for manufacturing and can help your organization optimize performance.

Download Now

Sponsored by HPE

Whitepaper

Porting CUDA Applications to Run on AMD GPUs

A workload-driven system capable of running HPC/AI workloads is more important than ever. Organizations face many challenges when building a system capable of running HPC and AI workloads. There are also many complexities in system design and integration. Building a workload driven solution requires expertise and domain knowledge that organizational staff may not possess.

This paper describes how Quanta Cloud Technology (QCT), a long-time Intel® partner, developed the Taiwania 2 and Taiwania 3 supercomputers to meet the research needs of the Taiwan’s academic, industrial, and enterprise users. The Taiwan National Center for High-Performance Computing (NCHC) selected QCT for their expertise in building HPC/AI supercomputers and providing worldwide end-to-end support for solutions from system design, through integration, benchmarking and installation for end users and system integrators to ensure customer success.

Download Now

Sponsored by AMD

Advanced Scale Career Development & Workforce Enhancement Center

Featured Advanced Scale Jobs:

Receive the Monthly
Advanced Computing Job Bank Resource:

HPCwire Resource Library

HPCwire Product Showcase

Subscribe to the Monthly
Technology Product Showcase:

HPCwire