October 25, 2023
When planning an AI or HPC investment, applications are where the rubber meets the road and ultimately determine the benefits of any hardware investment. In add Read more…
October 22, 2022
When complete, the Crossroads supercomputer at Los Alamos National Laboratory (LANL) is expected to deliver quadruple the performance of LANL’s already-powerful Trinity supercomputer (20.16 Linpack petaflops). Now, the first phase of Crossroads – called “Tycho” – has been successfully installed at the lab, with the... Read more…
October 19, 2022
Cerebras Systems has secured another U.S. government win for its wafer scale engine chip – which is considered the largest chip in the world. The company's chip technology will be part of a research project sponsored by the National Nuclear Security Administration to find... Read more…
August 6, 2022
Lawrence Livermore National Laboratory (LLNL) is one of the laboratories that operates under the auspices of the National Nuclear Security Administration (NNSA), which manages the United States’ stockpile of nuclear weapons. Amid major efforts to modernize that stockpile, LLNL has announced that researchers from its own Energetic Materials Center... Read more…
July 6, 2022
In this one-on-one interview, Doug Kothe – associate laboratory director, Computing and Computational Sciences at Oak Ridge National Laboratory, and director Read more…
June 28, 2022
With the Linpack exaflops milestone achieved by the Frontier supercomputer at Oak Ridge National Laboratory, the United States is turning its attention to the next crop of exascale machines, some 5-10x more performant than Frontier. At least one such system is being planned for the 2025-2030 timeline, and the DOE is soliciting input from the vendor community... Read more…
June 21, 2022
Additional details of the architecture of the exascale El Capitan supercomputer were disclosed today by Lawrence Livermore National Laboratory’s (LLNL) Terri Read more…
May 4, 2022
Intel spinoff Cornelis Networks, custodian and developer of the Omni-Path networking portfolio, is now closer to reaching its next-gen networking roadmap targets thanks to an R&D contract with the Department of Energy’s National Nuclear Security Administration (NNSA). The contract is valued at $18 million. The Next-Generation High Performance Computing Network (NG-HPCN) project brings together NNSA labs and... Read more…
Making the Most of Today’s Cloud-First Approach to Running HPC and AI Workloads With Penguin Scyld Cloud Central™
Bursting to cloud has long been used to complement on-premises HPC capacity to meet variable compute demands. But in today’s age of cloud, many workloads start on the cloud with little IT or corporate oversight. What is needed is a way to operationalize the use of these cloud resources so that users get the compute power they need when they need it, but with constraints that take costs and the efficient use of existing compute power into account. Download this special report to learn more about this topic.
Data center infrastructure running AI and HPC workloads requires powerful microprocessor chips and the use of CPUs, GPUs, and acceleration chips to carry out compute intensive tasks. AI and HPC processing generate excessive heat which results in higher data center power consumption and additional data center costs.
Data centers traditionally use air cooling solutions including heatsinks and fans that may not be able to reduce energy consumption while maintaining infrastructure performance for AI and HPC workloads. Liquid cooled systems will be increasingly replacing air cooled solutions for data centers running HPC and AI workloads to meet heat and performance needs.
QCT worked with Intel to develop the QCT QoolRack, a rack-level direct-to-chip cooling solution which meets data center needs with impressive cooling power savings per rack over air cooled solutions, and reduces data centers’ carbon footprint with QCT QoolRack smart management.
© 2023 HPCwire. All Rights Reserved. A Tabor Communications Publication
HPCwire is a registered trademark of Tabor Communications, Inc. Use of this site is governed by our Terms of Use and Privacy Policy.
Reproduction in whole or in part in any form or medium without express written permission of Tabor Communications, Inc. is prohibited.