June 4, 2024
The Chapel team at HPE is very excited to announce ChapelCon '24! ChapelCon is a conference about applications written in the Chapel parallel programming lang Read more…
December 8, 2021
In the first of a series of guest posts on heterogenous computing, James Reinders, who returned to Intel last year after a short “retirement,” considers how SYCL will contribute to a heterogeneous future for C++. Reinders digs into SYCL from multiple angles... Read more…
May 7, 2020
Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…
September 4, 2019
As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…
June 20, 2018
In an era of multicore processors coupled with manycore accelerators in all kinds of devices from smartphones all the way to supercomputers, it is important to Read more…
March 27, 2018
Unicorn is a parallel programming framework that provides a simple way to program multi-node clusters with CPUs and GPUs, and potentially other compute devices. Read more…
July 3, 2017
Looking at the Top500 and Green500 ranks, one clearly realizes that most HPC systems are heterogeneous architecture using COTS (Commercial Off-The-Shelf) hardware, combining traditional multi-core CPUs with massively parallel accelerators, such as GPUs and MICs. With processor frequencies now hitting a solid wall, the only truly open avenue for riding today the Moore’s law is increasing hardware parallelism in several different ways: more computing nodes, more processors in each node, more cores within each processor, and longer vector instructions in each core. Read more…
April 5, 2017
What programming model refers to threads as friends and uses types like NUMBR (integer), NUMBAR (floating point), YARN (string), and TROOF (Boolean)? That would Read more…
As Federal agencies navigate an increasingly complex and data-driven world, learning how to get the most out of high-performance computing (HPC), artificial intelligence (AI), and machine learning (ML) technologies is imperative to their mission. These technologies can significantly improve efficiency and effectiveness and drive innovation to serve citizens' needs better. Implementing HPC and AI solutions in government can bring challenges and pain points like fragmented datasets, computational hurdles when training ML models, and ethical implications of AI-driven decision-making. Still, CTG Federal, Dell Technologies, and NVIDIA unite to unlock new possibilities and seamlessly integrate HPC capabilities into existing enterprise architectures. This integration empowers organizations to glean actionable insights, improve decision-making, and gain a competitive edge across various domains, from supply chain optimization to financial modeling and beyond.
Data centers are experiencing increasing power consumption, space constraints and cooling demands due to the unprecedented computing power required by today’s chips and servers. HVAC cooling systems consume approximately 40% of a data center’s electricity. These systems traditionally use air conditioning, air handling and fans to cool the data center facility and IT equipment, ultimately resulting in high energy consumption and high carbon emissions. Data centers are moving to direct liquid cooled (DLC) systems to improve cooling efficiency thus lowering their PUE, operating expenses (OPEX) and carbon footprint.
This paper describes how CoolIT Systems (CoolIT) meets the need for improved energy efficiency in data centers and includes case studies that show how CoolIT’s DLC solutions improve energy efficiency, increase rack density, lower OPEX, and enable sustainability programs. CoolIT is the global market and innovation leader in scalable DLC solutions for the world’s most demanding computing environments. CoolIT’s end-to-end solutions meet the rising demand in cooling and the rising demand for energy efficiency.
SUBSCRIBE for monthly job listings and articles on HPC careers.
© 2024 HPCwire. All Rights Reserved. A Tabor Communications Publication
HPCwire is a registered trademark of Tabor Communications, Inc. Use of this site is governed by our Terms of Use and Privacy Policy.
Reproduction in whole or in part in any form or medium without express written permission of Tabor Communications, Inc. is prohibited.