Sweden Plans Expansion for Nvidia-Powered Berzelius Supercomputer

January 26, 2023

The Atos-built, Nvidia SuperPod-based Berzelius supercomputer – housed in and operated by Sweden’s Linköping-based National Supercomputer Centre (NSC) – Read more…

Oregon State University to Launch Nvidia-Powered Supercomputer Center

October 17, 2022

Oregon State University (OSU) is planning to launch an expansive, expensive – $200 million – new research and education center. The center will be named aft Read more…

Nvidia Announces ‘Eos’ Supercomputer

March 22, 2022

At GTC22 today, Nvidia unveiled its new H100 GPU, the first of its new ‘Hopper’ architecture, along with a slew of accompanying configurations, systems and Read more…

Nvidia Expands Its Certified Server Models, Unveils DGX SuperPod Subscriptions

June 2, 2021

Nvidia is busy this week at the virtual Computex 2021 Taipei technology show, announcing an expansion of its nascent Nvidia-certified server program, a range of Read more…

Nvidia’s Newly DPU-Enabled SuperPod Is a Multi-Tenant, Cloud-Native Supercomputer

April 12, 2021

At GTC 2021, Nvidia has announced an upgraded iteration of its DGX SuperPods, calling the new offering “the first cloud-native, multi-tenant supercomputer.” Read more…

  • arrow
  • Click Here for More Headlines
  • arrow

Whitepaper

Penguin Computing Scyld Cloud Central™: A New Cloud-First Approach to HPC and AI Workloads

Making the Most of Today’s Cloud-First Approach to Running HPC and AI Workloads With Penguin Scyld Cloud Central™

Bursting to cloud has long been used to complement on-premises HPC capacity to meet variable compute demands. But in today’s age of cloud, many workloads start on the cloud with little IT or corporate oversight. What is needed is a way to operationalize the use of these cloud resources so that users get the compute power they need when they need it, but with constraints that take costs and the efficient use of existing compute power into account. Download this special report to learn more about this topic.

Download Now

Sponsored by Penguin Solutions

Whitepaper

QCT POD- An Adaptive Converged Platform for HPC and AI

Data center infrastructure running AI and HPC workloads requires powerful microprocessor chips and the use of CPUs, GPUs, and acceleration chips to carry out compute intensive tasks. AI and HPC processing generate excessive heat which results in higher data center power consumption and additional data center costs.

Data centers traditionally use air cooling solutions including heatsinks and fans that may not be able to reduce energy consumption while maintaining infrastructure performance for AI and HPC workloads. Liquid cooled systems will be increasingly replacing air cooled solutions for data centers running HPC and AI workloads to meet heat and performance needs.

QCT worked with Intel to develop the QCT QoolRack, a rack-level direct-to-chip cooling solution which meets data center needs with impressive cooling power savings per rack over air cooled solutions, and reduces data centers’ carbon footprint with QCT QoolRack smart management.

Download Now

Sponsored by QCT

Advanced Scale Career Development & Workforce Enhancement Center

Featured Advanced Scale Jobs:

SUBSCRIBE for monthly job listings and articles on HPC careers.

HPCwire Resource Library

HPCwire Product Showcase

Subscribe to the Monthly
Technology Product Showcase:

HPCwire