March 16, 2023
Optical I/O is being singled out by top companies to push computing beyond exascale and into zettascale. The technology was singled out in a recent speech by AM Read more…
February 21, 2023
If a zettascale computer were assembled using today's supercomputing technologies, it would consume about 21 gigawatts, or equivalent to the energy produced by 21 nuclear power plants. The math was presented in a keynote speech by AMD CEO Lisa Su at the ISSCC trade show being held in San Francisco held this week. A zettaflop supercomputer would have the computing capability... Read more…
November 29, 2021
HPCwire's Managing Editor sits down with Intel's Raja Koduri and Riken's Satoshi Matsuoka in St. Louis for an off-the-cuff conversation about their SC21 experience, what comes after exascale and why they are collaborating. Koduri, senior vice president and general manager of Intel's accelerated computing systems and graphics (AXG) group, leads the team... Read more…
December 6, 2018
In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From exascale to quantum computing, the details are here. Read more…
December 6, 2018
Exascale machines (of at least a 1 exaflops peak) are anticipated to arrive by around 2020, a few years behind original predictions; and given extreme-scale performance challenges are not getting any easier, it makes sense that researchers are already looking ahead to the next big 1,000x performance goal post: zettascale computing. Read more…
Five Recommendations to Optimize Data Pipelines
When building AI systems at scale, managing the flow of data can make or break a business. The various stages of the AI data pipeline pose unique challenges that can disrupt or misdirect the flow of data, ultimately impacting the effectiveness of AI storage and systems.
With so many applications and diverse requirements for data types, management systems, workloads, and compliance regulations, these challenges are only amplified. Without a clear, continuous flow of data throughout the AI data lifecycle, AI models can perform poorly or even dangerously.
To ensure your AI systems are optimized, follow these five essential steps to eliminate bottlenecks and maximize efficiency.
Karlsruhe Institute of Technology (KIT) is an elite public research university located in Karlsruhe, Germany and is engaged in a broad range of disciplines in natural sciences, engineering, economics, humanities, and social sciences. For institutions like KIT, HPC has become indispensable to cutting-edge research in these areas.
KIT’s HoreKa supercomputer supports hundreds of research initiatives including a project aimed at predicting when the Earth’s ozone layer will be fully healed. With HoreKa, projects like these can process larger amounts of data enabling researchers to deepen their understanding of highly complex natural processes.
Read this case study to learn how KIT implemented their supercomputer powered by Lenovo ThinkSystem servers, featuring Lenovo Neptune™ liquid cooling technology, to attain higher performance while reducing power consumption.
© 2023 HPCwire. All Rights Reserved. A Tabor Communications Publication
HPCwire is a registered trademark of Tabor Communications, Inc. Use of this site is governed by our Terms of Use and Privacy Policy.
Reproduction in whole or in part in any form or medium without express written permission of Tabor Communications, Inc. is prohibited.